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Impacts of the assumptions used for the simultaneous data 

reconciliation and parameter estimation problem  

Rosario, T. C.1, Kalid, R. A.2, Santana, D. D.3 

Abstract The simultaneous solution of data reconciliation and parameter estimation problems (SDRPE) 

involves an optimization problem build on statistical hypothesis. It is possible to use the reconciled 

quantities and the estimated parameters for the optimization of process plants or statistical process control, 

so it is important to evaluate the statistical significance of these results, which depends on the validity of 

the aforementioned hypotheses. Thus, this work assesses the impacts of the assumptions adopted for the 

SDRPE, in addition to the statistical interpretation of the results especially the behavior of residuals, 

through a case study applied to a heat exchange process. 
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1 Introduction  

The data reconciliation (DR) technique bases on adjusting a set of measured quantities through an 

optimization problem so that they obey the conservation laws and constraints of a system (Crowe, 1996). 

The adjusted data can then be used for estimating parameters (PE) of this system. However, the 

simultaneous resolution of the aforementioned problems (SDRPE) is the most reliable method when there 

are uncertainties in the measured quantities regarding dependent and independent variables (Tjoa and 

Biegler, 1992).  

The solution to the problems of data reconciliation and parameter estimation, regardless of whether they 

are solved separately or simultaneously, involves an optimization problem. The most common is to use the 

weighted least squares (WLS) (Schwaab and Pinto, 2007), which for the simultaneous problem gives: 

 

(𝒛𝒐 − 𝒛𝑹)𝑇𝑼𝒛𝒛
−1(𝒛𝒐 − 𝒛𝑹),𝒛𝑹,𝜽

𝑚𝑖𝑛  (1) 

 

subject to: 

𝑔(𝒛𝑹, 𝜽) = 0, (2)   

where 𝒛𝒐 is the vector of observed quantities, 𝒛𝑹 is the vector of reconciled quantities, 𝑼𝒛𝒛 is the covariance 

matrix of the observed variables, 𝜽 is the vector of parameters of the model, and 𝑔(𝒛𝑹, 𝜽) are the constraints, 

including the conservation laws. 

The optimization problem, (1), (2) is based on assumptions (premises) adopted during the development 

of the objective function (1) from the maximum likelihood procedure. 

It is possible to find in the literature works that discuss the problem of simultaneous data reconciliation 

and parameter estimation, such as Tjoa and Biegler (1992) and Francken et al. (2009). However, it is a 
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common approach to do not present a residual analysis to investigate whether the assumptions adopted for 

the construction of the objective function were satisfied, which can limit the interpretation of the results 

from a statistical perspective. Thus, the purpose of this work is to discuss the importance of performing a 

residual analysis for the SDRPE results and to present appropriate tools to perform it. From this, it is 

possible to evaluate the impacts on the statistical interpretation of the results through a case study  

This work is organized as follows: Section 2 presents the development of the objective function from 

the maximum likelihood procedure highlighting its premises. Section 3 presents the statistical evaluation 

needed to evaluate if such premises are fulfilled after an estimation procedure. Section 4 details the 

methodology of the case study to exemplify the statistical evaluation. Section 5 presents the results within 

the statistical interpretation. Finally, Section 6 offers some concluding remarks. 

2 Revisiting the objective function 

The objective function of the SDRPE problem can be obtained from the maximum likelihood procedure 

(3), which aims to maximize the probability that the experimental data are as close as possible to its real 

values (Schwaab and Pinto, 2007; Bard, 1973).  

max 𝐿(𝒛, 𝜽, 𝒕) = max 𝑝(𝒛𝒐; 𝒛, 𝑼𝑧𝑧 , 𝒕),  (3) 

 where 𝒛 is the vector of the real (and unknown) values of the quantities, 𝐿 is the likelihood function,  𝑝 is a 

probability function and t is the time. 

To solve (3) is necessary establish some assumptions. Table 1 describes the premises generally adopted. 

Table 1. Description of the assumptions adopted for the development of the objective function. 

Assumptions Description 

A1 The process is in steady state. 

A2 The experiment is well done. 

A3 The residues (difference between the observed data and the respective reconciliated 

values) are normally distributed. 

A4 The model represents the process. 

A5 The residues are not autocorrelated. 

If the assumptions A1, A2 and A3 are valid: data in steady stated, trustworthy and adherents a Gaussian 

probability density function then form (3) can be written as follows: 

𝑝(𝒛𝒐; 𝒛, 𝑼𝑧𝑧) =
1

√2𝜋 𝑑𝑒𝑡(𝑼𝑧𝑧)  
𝑒𝑥𝑝 [−

1

2
(𝒛𝒐 − 𝒛)𝑇𝑼𝑧𝑧

−1(𝒛𝒐 − 𝒛)]. 
(4) 

 

When considering the assumption A4 the value of 𝒛 can be described by 𝒛𝑹, a value obtained from a 

representative model. Thus, (4) takes the following form: 

𝑝(𝒛𝒐; 𝒛𝑹, 𝑼𝑧𝑧) =
1

√2𝜋 𝑑𝑒𝑡(𝑼𝑧𝑧)  
𝑒𝑥𝑝 [−

1

2
(𝒛𝒐 − 𝒛𝑹)𝑇𝑼𝑧𝑧

−1(𝒛𝒐 − 𝒛𝑹)]. 
(5) 

 

By replacing (5) in (3): 
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𝐿(𝒛𝑹, 𝜽) =
1

√2𝜋 𝑑𝑒𝑡(𝑼𝑧𝑧)  
𝑒𝑥𝑝 [−

1

2
(𝒛𝒐 − 𝒛𝑹)𝑇𝑼𝑧𝑧

−1(𝒛𝒐 − 𝒛𝑹)].  
(6) 

 

The objective is to maximize (6). By applying the natural logarithm and performing mathematical 

operations on (6), the maximum likelihood procedures result in minimizing: 

𝐿(𝒛𝑹, 𝜽) = (𝒛𝒐 − 𝒛𝑹)𝑇𝑼𝑧𝑧
−1(𝒛𝒐 − 𝒛𝑹). (7) 

 Therefore, using the objective function described by (7) in an optimization problem the statistical 

interpretations of the results implies that the results will satisfy the assumptions adopted in Table 1. 

3 The importance of statistically evaluate of the reconciled values  

According to Schwaab and Pinto (2007), estimation procedures do not end after the solution of the 

optimization problem, because it is necessary to analyze the quality of the results obtained through 

appropriate statistical tools. This strategy allows us to conclude whether the estimation procedure 

performed is satisfactory or there is a need to reevaluate the experimental data, process model, and 

assumptions, for example. 

The statistical significance of the objective function used depends on the validity of the defined 

assumptions. Therefore, the results obtained are statistically valid if the defined assumptions are confirmed 

(Montgomery and Runger, 2003). According to Santana (2014), the fulfillment of the assumptions can be 

verified through the residual analysis applied to the obtained values. 

Table 2 presents suggestions to check the validity of the adopted assumptions. 

 Table 2. Suggestions to check the validity of the adopted assumptions. 

Assumptions How to evaluate 

A1 It must be verified by the analyst of the experiment. 

A2 Cannot be proved, but only controlled by performing the experiments in a 

controlled and adequate way. 

A3 Can be evaluated through hypothesis tests and graphical analysis. 

A4 Can be ensured through conceptual and qualitative evaluation and through 

hypothesis tests and graphical analysis. 

A5 Can be evaluated through hypothesis tests and graphical analysis. 

4 Methodology 

4.1 Case study 

The case study discussed in this work is borrowed from Rosario et al. (2020) which compare two methods 

of solution (decoupled and simultaneous) for the SDRPE problem using a heat exchange system (Fig. 1). 

The decoupled solution solves both problems separately through a loop until convergence is achieved. In 

the simultaneous solution the problems are solved simultaneously by using a single optimization problem. 

This work evaluates only the results obtained for the simultaneous solution which treats the SDRPE 

problem through a single optimization problem. In fact, the SDRPE is a coupled problem, i.e. all variables 

are included in a single objective function. The decoupled solution is just a mathematical artifice to help 
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solve the problem (Rosario et al., 2020). Moreover, in order for the parameters to inherit the statistical 

information contained in the measurements, the data reconciliation and the parameter estimation must be 

done simultaneously instead of sequentially (Crowe, 1996). 

 

 
 

Fig. 1. Heat exchange process diagram. Font: adapted from Narasimhan and Jordache (2000). 

4.2 Residual analysis 

The residual analysis is performed based on statistical and graphical tools as depicted in Fig. 2. 

 

 
 

 

Fig. 2. Tools used to evaluate the residues of the results obtained. 
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5 Results and discussion 

5.1 Assumptions A1 and A2 

The assumption of a steady-state process (A1) depends on the behavior of the studied process. So, it is 

assumed that the analyst knows this information properly. Regarding the assumption of a well-done 

experiment (A2), it is related to how the experiment is conducted and can be controlled through the planning 

experiments technique. Therefore, it is the responsibility of the analysts to ensure that these assumptions 

are valid.  

5.2 Assumptions A3 and A4 

The validity of assumptions regarding the normally distributed residues (A3) and the representative model 

(A4) is evaluated based on the residues obtained after the resolution of the SDRPE problem. 

Fig. 3a shows that the histograms of the residues do not present adherence to a normal PDF (probability 

density function), because the behavior deviates from the expected distribution (red line), in addition Fig. 

3b suggests that the mean of the residues is not equal to zero. 

  Statistical tests are performed to confirm such analysis and are presented in in Table 2, considering a 

95% probability of coverage. It is confirmed that the residues are not adherent to a normal PDF.  

Additionally, the Ttest allows to confirm that the residues do not have a zero mean, and the 

homoscedasticity tests showed that probably the residues are not homoscedastic. So, the representative 

model assumption can be questioned. 

 

  
Fig. 3a. Histogram of the relative residues. Fig. 3b. Relative residue dispersion for the 

model estimates. 

 

Table 3. Results of the tests of normality, mean and homoscedasticity applied to residues. 

Test Null hypothesis  p-value 

Lilliefors Residues adhere to normality 2,00 × 10−15 

Ttest Mean equal to zero 7,61 × 10−6 

White test (Lagrange multipliers) Residues are homoscedastic 1,22 × 10−2 

White test (Test F) Residues are homoscedastic 9,10 × 10−3 

Bresh Pagan (Test F) Residues are homoscedastic 1,79 × 10−7 
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5.3 Assumption A5 

The autocorrelation plots (Fig. 4) present peaks that exceeded the interval limits of 95% confidence, 

suggesting that the residues are autocorrelated. Consequently, there is no independence between the 

measurements. The results presented in Table 4, performed for 95% probability coverage, also allow 

questioning the validity of the assumption that the residues are not autocorrelated. 

 

 
Fig. 4. Autocorrelation of the relative residues. 

Table 4. Results of the autocorrelation tests applied to residues. 

Test Null hypothesis p-value 

Ljung-Box (Chi-2) Not autocorrelated residues 0,059 

Ljung-Box (Box-pierce) Not autocorrelated residues 0,063 

5.4 Impacts of residual analysis 

The unsuitability of the assumptions A3, A4, and A5 does not invalidate the results obtained, but makes it 

impossible to interpret the statistical significance of the adjusted model using the weighted least squares 

method. Alternatively, one can investigate the presence of outliers in the process and solve the problem 

again by removing such points or develop an objective function that does not incorporate such assumptions. 

6 Conclusion  

This work discussed the need for statistical analysis of the residuals after the simultaneous data 

reconciliation procedures and its impact on the interpretation of results. The case study exemplified such 

procedures in which it is not possible to confirm the assumptions applied to develop the objective function. 

In fact, three of the premises adopted for the development of the weighted least squares objective function 

are not met, so nothing can be concluded about the statistical significance of the results obtained for the 

case study evaluated. However, questioning the statistical significance of the results do not imply that they 

are wrong or that the adjusted model cannot be used. 

As a suggestion for future work, one has: (a) the impacts of the of gross errors or outliers in the process 

on the fulfillment of such assumptions, (b) methodologies to compare the results obtained from different 

procedures, when conflicting conclusions are obtained from the hypothesis testing, and (c) development of 

objective functions that solve the Maximum Likelihood problem without incorporating the assumptions of 

normally distributed and not autocorrelated residues. 
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