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Abstract. In multiple research fields (ergonomics, product design, robotics), 
many studies aim to express the different types of agent-environment interac-
tions through the concept of affordance. Nevertheless, a standardized metrics 
able to quantify the affordance is still absent, or limited to specific applications, 
lacking in generalization. In the present article authors propose a novel metrics 
able to quantify the agent-environment interaction in a continuous scale (af-
fordance level), through an information-based measure. To quantify the agent-
environment interaction, the motor difficulty of the observed agent is compared 
to the motor difficulty of a reference agent whose movements allow to success-
fully execute the motor task. The proposed metrics expresses the ability of an 
observed agent in accomplishing a motor task (agent-environment interaction) 
by capturing its stochastic behavior. The quantitative metrics for the affordance 
has great potentials in different fields of application since it can be applied to 
any motor task. Results of simulations performed show the effectiveness of the 
metrics, paving the way to a range of new applications and promising research 
directions. 
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1 Background 

In the Ecological Psychology research field, Gibson coined the term ‘affordance’ to 
express how an animal perceives the surroundings, underlying the action possibilities 
enabled by the environment [1]. Due to the multiple formulations and the various 
research fields where the affordance has been used (ergonomics, industrial design, 
and robotics), the term ‘animal’ has been substituted by ‘agent’, a general term that 
represents the subject (animal, robot, human, co-bot) of the interaction with the envi-
ronment. Ecological psychologists deepened the affordance meaning, claiming that it 
can be a property of the agent-environment system [2], or a relation between abilities 
of the agent and features of the environment [3]. In industrial design Norman com-



 
 

bined the affordance with notions from ergonomics: he discerned between the ‘actual’ 
and ‘perceived’ affordance, referring to the first as the real functionality of the object, 
and to the latter as the functionality of the object perceived by the agent [4]. In robot-
ics, researchers adopted the affordance to increase perceptual capabilities of robots in 
interacting with the environment [5], [6]. The potential actions of robots in the envi-
ronment (navigation, manipulation, grasping objects, locomotion) are evaluated bas-
ing not only on geometric features of the surroundings, by focusing on what is afford-
ed: the robot evaluates if an object is ‘graspable’ or ‘rollable’, or if a path is ‘walka-
ble’, instead of focusing only on identities of the surroundings (shape, color…). De-
spite the widespread adoption of affordance, current models do not evaluate the agent-
environment interaction through a quantitative metrics independent from the research 
field or task considered. Warren [7] executed experiments to evaluate the agent’s 
affordance in stair climbing, identified as the ratio between the leg length (the agent) 
and stair height (the environment): when the ratio is greater than 0.88 (critical point), 
the stair cannot be climbed. Despite this quantitative result, the ratio is a body-scaled 
measure and do not take into account non-anthropometric features that could affect 
the stair climbing (e.g., age): in many cases the action possibilities are related not only 
on body-scaled measures [8]. Furthermore, this result could be applied only for stair 
climbing applications, through a binary approach (yes/no affordance). 
For these reasons, in the present article a novel quantitative metrics independent from 
the application field, able to evaluate the agent’s affordance in a continuous scale and 
considering both agent-related and environment-related features, is proposed. 
The remaining of this paper is organized as follows: the second section is devoted to 
the description of the quantitative metrics able to evaluate the agent’s affordance level 
by focusing on both the reference and observed agent; the third section is devoted to 
the analysis of results obtained from the numerical simulation. In the last section con-
clusions are provided. 

2 Material and Methods 

The quantitative metrics able to express the agent’s affordance level is evaluated 
through an information-based measure called Index of Difficulty (ID). The original 
ID defined by Fitts, aimed at quantifying the difficulty of a simple reaching motor 
task characterized by a target of width 𝑊, placed at distance 𝐷 from a given starting 
point [9]. Other authors extended the application of the ID, to express the difficulty 
associated to a motor task characterized by a general trajectory 𝑡, fully constrained by 
a target of width 𝑊(𝑠) orthogonal to the trajectory 𝑡 at the curvilinear coordinate 𝑠 
[10]. 

𝑰𝑫 = න
𝒅𝒔

𝑾(𝒔)𝒕

 (1) 

In [11] equation (1) has been modified to evaluate the motor difficulty of an observed 
agent in performing a general motor task (walking) by considering the stochastic be-
havior of the agent through trajectories executed (𝑡௞, 𝑘 = 1, … , 𝑛) and movement 
variability 𝑊(𝑠, 𝜑): 



 
 

𝑰𝑫𝒂𝒈𝒆𝒏𝒕(𝒕𝒂𝒗𝒈, 𝝋) = න
𝒅𝒔

𝑾(𝒔, 𝝋)𝒕𝒂𝒗𝒈

 (2) 

Where 𝑡௔௩௚ is the average trajectory, and 𝑊(𝑠, 𝜑) is evaluated in the section orthogo-
nal to 𝑡௔௩௚ at the curvilinear coordinate 𝑠 (Fig. 1). Since in reaching motor tasks 
agent’s trajectories are normally distributed with respect to their average 𝑡௔௩௚  [12], 
[13], it is assumed that spatial configurations (i.e. action possibilities) reached at 𝑠 
(𝑞௞(𝑠)) follow a Gaussian distribution centred in 𝑡௔௩௚ (𝑞௔௩௚(𝑠)), with a probability 
level 𝜑. 

 
Fig. 1 Distribution of 𝑞௞(𝑠) at 𝑠 

𝑊(𝑠, 𝜑) is evaluated as: 

𝑾(𝒔, 𝝋) = 𝟐 ∙ 𝒛ത ∙ 𝝈(𝒒𝒌(𝒔)) (3) 

Where 𝑧 ̅is the z-score (𝑧̅ = 3 for 𝜑 = 99.73%) and 𝜎(𝑞௞(𝑠)) is standard deviation of 
𝑞௞(𝑠). 𝑊(𝑠, 𝜑) expresses the action possibilities of the agent in interacting with the 
environment: greater the extent of 𝑊(𝑠, 𝜑), more the alternatives available to the 
agent to execute the motor task. In this context no reference is provided on how the 
motor task should properly be executed. This information will be included in case of a 
reference agent, whose movements show how the motor task should be optimally 
performed. 
In the following subsections, equation (2) will be adopted to evaluate the motor diffi-
culty of both the reference and observed agent. 
 
2.1 Reference Agent 

In general motor tasks, a nominal trajectory (𝑡௥௘௙) to follow can be defined for 
multiple reasons: it can represent the best path allowing to successfully execute the 
task (under spatial or time constraints), or in case of robots, it can represent the trajec-
tory allowing to minimize the agent’s cost function (e.g. minimum jerk) for a high-
level motor coordination. Unfortunately, agents cannot perfectly follow the nominal 



 
 

trajectory, since movements are generated by a noisy system [14], [15]. Consequently, 
it can be defined a given width 𝑊௥௘௙(𝑠) centered in 𝑡௥௘௙ and orthogonal to 𝑡௥௘௙ at the 
curvilinear coordinate 𝑠, expressing the maximum tolerance of movement variability 
allowing to successfully execute the task. By considering both 𝑊௥௘௙(𝑠) and 𝑡௥௘௙, the 
optimal behavior in performing a general motor task is expressed through the motor 
difficulty of the reference agent, defined as: 

𝑰𝑫𝒓𝒆𝒇 = න
𝒅𝒔

𝑾𝒓𝒆𝒇(𝒔)𝒕𝒓𝒆𝒇

 (4) 

Briefly, 𝑊௥௘௙(𝑠) represents the region of allowable action possibilities to correctly 
execute the task. As said before, in reaching motor tasks agent’s trajectories are nor-
mally distributed: consequently, movements of a reference agent are assumed to fol-
low a Gaussian distribution centered on 𝑞௥௘௙(𝑠), point of 𝑡௥௘௙ at the curvilinear coor-
dinate 𝑠, at a given probability 𝑝௥௘௙(𝑠) (Fig. 2). 𝑓௥௘௙(𝑠, 𝑥) is the probability density 
function of the distribution at 𝑠. 𝑝௥௘௙(𝑠) and 𝑓௥௘௙(𝑠, 𝑥) are constant along the 𝑡௔௩௚. 

 
Fig. 2 Reference Agent’s behaviour (𝑓௥௘௙(𝑥)) at 𝑠 

The assumption that frequencies of spatial configurations reachable by the reference 
agent are normally distributed in the section orthogonal to 𝑡௥௘௙, represents the best 
behaviour achievable, since the higher frequency is defined on 𝑞௥௘௙(𝑠): the observed 
agent should follow this behaviour along the entire path to optimally execute the task. 
Both 𝑊௥௘௙(𝑠) and 𝑡௥௘௙ can be chosen during the design phase of the motor task, de-
fining the maximum allowable tolerance, and the nominal trajectory to follow to op-
timally execute the task. In this case 𝑊௥௘௙(𝑠) is defined a priori, and from (3) it is 
possible to evaluate the standard deviation of the spatial configurations reachable by 
the reference agent 𝜎௥௘௙(𝑠) as: 

𝝈𝒓𝒆𝒇(𝒔) =
𝑾𝒓𝒆𝒇(𝒔)

𝟐 ∙ 𝒛ത
 (5) 

𝑝௥௘௙(𝑠) = 99.73%, with 𝑧̅ = 3, for each curvilinear coordinate 𝑠 (i.e., 𝑝௥௘௙(𝑠) =

𝑝௥௘௙  ∀ 𝑠). On the other hand, 𝑡௥௘௙ and 𝑊௥௘௙(𝑠) can also refer to a real agent whose 



 
 

movements allow to successfully execute the task such as to consider its behaviour as 
a reference. 
 
2.2 Observed Agent 

Movements executed by the observed agent should be as close as possible to the ones 
of the reference agent: greater the similarity between the two behaviors, higher the 
affordance level. In fact, by defining the behavior of the reference agent through the 
𝑡௥௘௙ and 𝑊௥௘௙(𝑠), it is possible to quantify the agent-environment interaction, i.e. the 
effectiveness of the observed agent in executing the motor task. 
For a perfect matching between the two agents’ behaviors, the motor difficulty expe-
rienced by the observed agent must be equal to 𝐼𝐷௥௘௙: in this case the action possibili-
ties of the observed agent (i.e., spatial configurations reachable) fit perfectly with the 
action possibilities of the reference one. 
The motor difficulty of the observed agent is evaluated relative to the reference 
movements that should be performed while executing the motor task: 

𝑰𝑫∩ = න
𝒅𝒔

𝑾෪∩(𝒔)𝒕𝒂𝒗𝒈

 (6) 

𝑡௔௩௚ is the average trajectory, while 𝑊෩∩(𝑠) is defined as: 

𝑾෪∩(𝒔) = 𝑾∩(𝒔) ∙ 𝒑∩(𝒔) ∙ 𝜼∩(𝒔) (7) 

𝑊෩∩(𝑠) is indicative of the observed agent’s behavior, evaluated in the section orthog-
onal to 𝑡௥௘௙ (nominal trajectory) at the curvilinear coordinate 𝑠. 𝑊∩(𝑠) represents the 
region where spatial configurations reachable by the observed agent are within 
𝑊௥௘௙(𝑠) (𝑊∩(𝑠) ≤ 𝑊௥௘௙(𝑠)): it provides ‘extensive’ information on action possibili-
ties reachable within the reference tolerance. 𝑊∩(𝑠) can be lower than 𝑊௥௘௙(𝑠) when 
the observed agent is physically constrained, unable to reach all the spatial configura-
tions within the reference tolerance: lower the 𝑊∩(𝑠), greater the difference with the 
reference agent. In Fig. 3 the case of 𝑊∩(𝑠) = 𝑊௥௘௙(𝑠) is shown.  

 
Fig. 3 Example of the Observed Agent’s behaviour (𝑓௢௕௦(𝑠, 𝑥)) at 𝑠 



 
 

From spatial configurations (i.e. action possibilities) reached at 𝑠 (𝑞௞(𝑠)), the corre-
sponding probability density function 𝑓௢௕௦(𝑠, 𝑥) can be obtained. 
Due to the stochastic nature of agents, the behavior of the observed agent will be nev-
er the same as the reference one. Differences between the two behaviors are identified 
by two factors: 𝑝∩(𝑠) and 𝜂∩(𝑠). 
𝑝∩(𝑠) quantifies the probability of the observed agent in reaching spatial configura-
tions within 𝑊௥௘௙(𝑠). 𝑝∩(𝑠) is evaluated from the probability density function 
𝑓௢௕௦(𝑠, 𝑥), between the boundaries of 𝑊௥௘௙(𝑠) (𝑥௜௡௙(𝑠) and 𝑥௦௨௣(𝑠)): 

𝒑∩(𝒔) = න 𝒇𝒐𝒃𝒔(𝒔, 𝒙)𝒅𝒙
𝒙𝒔𝒖𝒑(𝒔)

𝒙𝒊𝒏𝒇(𝒔)

 (8) 

When 𝑝∩(𝑠) = 𝑝௥௘௙(𝑠) = 𝑝௥௘௙ , all the spatial configurations reachable by the ob-
served agent are within 𝑊௥௘௙(𝑠). Nevertheless, this is not enough to state that there is 
a perfect matching between the two agents’ behaviours. 𝑝∩(𝑠) provides us ‘quantita-
tive’ information on action possibilities, but nothing is said about their frequency 
distribution within 𝑊௥௘௙(𝑠) (i.e., ‘qualitative’ information).  
𝜂∩(𝑠), called ‘overlapping index’ [16], allows to evaluate the similarity between two 
probability distribution functions, in this context referrable to 𝑓௥௘௙(𝑠, 𝑥) and 
𝑓௢௕௦(𝑠, 𝑥): 

𝜼∩(𝒔) = න 𝐦𝐢𝐧 [𝒇𝒓𝒆𝒇(𝒔, 𝒙), 𝒇𝒐𝒃𝒔(𝒔, 𝒙)]𝒅𝒙
𝒙𝒔𝒖𝒑(𝒔)

𝒙𝒊𝒏𝒇(𝒔)

 (9) 

𝜂∩(𝑠) is evaluated by considering the minimum between the two pdf and by applying 
the integral between the boundaries of 𝑊௥௘௙(𝑠): 𝜂∩(𝑠) is defined between zero and 
𝑝௥௘௙. Graphically, 𝜂∩(𝑠) expresses the area in common between the two distributions 
(Fig. 4): higher 𝜂∩(𝑠), greater the similarity between the two distributions.  

 
Fig. 4 Graphical representation of 𝜂∩(𝑠) 

In Fig. 5 different values of 𝜂∩(𝑠) are shown by comparing various Weibull distribu-
tions (scale parameter ‘a’ = 3, different shape parameters ‘b’) with the reference 



 
 

Gaussian distribution (𝜎௥௘௙(𝑠) = 1 [cm]): the overlapping index is sensitive to the 
different distributions, and the highest value (𝜂∩(𝑠) = 0.8619) is obtained with the 
Weibull distribution (in magenta) closest to the Gaussian one. It is assumed that the 
reference tolerance 𝑊௥௘௙(𝑠) has the width of 6 [cm]. 

 
Fig. 5 Evaluation of 𝜂∩(𝑠) by comparing various Weibull distributions (scale parameter 3, b 

= shape parameter) with the reference Gaussian distribution; 𝑞௥௘௙(𝑠) placed in 0. 

At a curvilinear coordinate 𝑠, the behavior of the observed agent, with respect to the 
reference one, is entirely described by the three factors 𝑊∩(𝑠), 𝑝∩(𝑠) and 𝜂∩(𝑠). The 
only (hypothetical) case when the behavior of the observed agent can be described by 
one factor is when there is a perfect matching between the two agents: in this scenario 
𝑓௥௘௙(𝑠, 𝑥) and 𝑓௢௕௦(𝑠, 𝑥) are identical, therefore 𝜂∩(𝑠) = 𝑝௥௘௙, bringing to 𝑝௥௘௙ =

𝑝∩(𝑠), and therefore to 𝑊∩(𝑠) = 𝑊௥௘௙(𝑠). In all the other cases, none of the three 
factors alone can describe the observed agent’s behavior.  
As an example, in Fig. 6 the two probability distribution functions 𝑓௥௘௙(𝑠, 𝑥) (Gaussi-
an distribution with 𝜎௥௘௙(𝑠) = 1 [cm]) and 𝑓௢௕௦(𝑠, 𝑥) (Weibull distribution with scale 
parameter 3 and shape parameter 7) are compared at a generic curvilinear coordinate 
𝑠; the latter one is shifted along 𝑥 to underline the different contributions of 𝑊∩(𝑠), 
𝑝∩(𝑠) and 𝜂∩(𝑠), highlighting their mutual independence. In the first subplot each 
colored distribution is compared to the reference one (black dotted line), while values 
of the three factors (same color of the colored distribution) are shown in the last three 
subplots. In the figure, 𝜂∩(𝑠) is never equal to 𝑝௥௘௙ since the two distributions are 
different. Nevertheless, there are cases when 𝑝∩(𝑠) = 𝑝௥௘௙ = 99.73% since the max-
imum value of 𝑊∩(𝑠) (4.15 [cm], last subplot) is lower than 𝑊௥௘௙(𝑠) (6 [cm]): the 
region where spatial configurations are reachable by the observed agent is lower than 
the limits defined by the reference tolerance. 
By focusing on the last two subplots in the range 𝑥 ∈ [−2; 0] [cm], while 𝑊∩(𝑠) is 
linearly increasing by approaching zero, 𝑝∩(𝑠) is almost constant: this effect is due to 



 
 

the shape of the Weibull distribution, and in particular to the left tail of the distribu-
tion that causes 𝑝∩(𝑠) to be almost steady while shifting 𝑓௢௕௦(𝑠, 𝑥) to the right. 
In this range  𝑝∩(𝑠) is not as sensitive as 𝑊∩(𝑠), supporting more the mutual inde-
pendence between the factors. 

 
Fig. 6 Values of 𝑊∩(𝑠), 𝑝∩(𝑠) and 𝜂∩(𝑠) by comparing the reference Gaussian distribution 

with a Weibull distribution (scale parameter 3 and shape parameter 7) shifted along 𝑥. 𝑞௥௘௙(𝑠) 
of the reference distribution is placed in 0. 

2.3 Affordance Level 

The overall behavior of the observed agent is evaluated through its motor difficulty 
(𝐼𝐷∩, equation 6), by considering 𝑊෩∩(𝑠) (i.e., 𝑊∩(𝑠), 𝑝∩(𝑠), 𝜂∩(𝑠)) along the average 
trajectory (𝑡௔௩௚) executed to accomplish the motor task. The overall behavior of the 
reference agent is evaluated through its motor difficulty (𝐼𝐷௥௘௙ , equation 4) by con-
sidering 𝑊௥௘௙(𝑠) along the nominal trajectory (𝑡௥௘௙). The affordance level (𝛼) is 
quantified by: 



 
 

𝜶 =
𝑰𝑫𝒓𝒆𝒇

𝑰𝑫∩
=

∫
𝒅𝒔

𝑾𝒓𝒆𝒇(𝒔)𝒕𝒓𝒆𝒇

∫
𝒅𝒔

𝑾෥ ∩(𝒔)𝒕𝒂𝒗𝒈

 (10) 

With 𝑊෩∩(𝑠) = 𝑊∩(𝑠) ∙ 𝑝∩(𝑠) ∙ 𝜂∩(𝑠). During the execution of a motor task, the ob-
served agent tries to behave as the reference one: movements executed reflect the 
motor behavior, which is summarized by the Index of Difficulty. Greater the devia-
tions from the reference agent, lower the values of the ‘quantitative’ (𝑝∩(𝑠)) and 
‘qualitative’ (𝜂∩(𝑠)) factors as well as the ‘extensive’ factor 𝑊∩(𝑠). Since 𝑝∩(𝑠) and 
𝜂∩(𝑠) are defined between zero and 𝑝௥௘௙, and 𝑊∩(𝑠) ≤ 𝑊௥௘௙(𝑠), the affordance level 
𝛼 is defined between zero and 𝑝௥௘௙

ଶ . The upper limit of 𝛼 is 𝑝௥௘௙
ଶ  because when 𝜂∩(𝑠) 

is equal to 𝑝௥௘௙, there is a perfect matching: therefore 𝑝∩(𝑠) = 𝑝௥௘௙ and 𝑊∩(𝑠) =

𝑊௥௘௙(𝑠). In this scenario, by considering 𝑡௔௩௚ = 𝑡௥௘௙ and setting 𝑊෩∩(𝑠) = 𝑝௥௘௙
ଶ ∙

𝑊௥௘௙(𝑠) in the denominator of equation 10, the affordance level is equal to 𝑝௥௘௙
ଶ . In 

the opposite case when 𝑝∩(𝑠), 𝜂∩(𝑠) and 𝑊∩(𝑠) tend to zero, 𝛼 tends to zero. The 
preliminary analysis of the proposed quantitative metrics to evaluate the agent’s af-
fordance, show that 𝛼 is defined in a continuous scale ([0; 𝑝௥௘௙

ଶ ]) and can be applied 
in any research field involving agent’s movements. The motor behavior of the ob-
served agent is summarized by its motor difficulty 𝐼𝐷∩, through the three independent 
factors (𝑝∩(𝑠), 𝜂∩(𝑠) and 𝑊∩(𝑠)) and the average trajectory 𝑡௔௩௚. Various combina-
tions of 𝑝∩(𝑠), 𝜂∩(𝑠) and 𝑊∩(𝑠) define different 𝐼𝐷∩ values: by comparing 𝐼𝐷∩  with 
the motor difficulty of the reference agent (𝐼𝐷௥௘௙), the affordance level 𝛼 is evaluated. 
Next section is devoted to show the effectiveness of the novel quantitative metrics 
through a numerical simulation. 

3 Numerical Simulation 

The affordance level is quantified through a numerical simulation by defining firstly 
the behaviour of the reference agent through 𝑊௥௘௙(𝑠), 𝑡௥௘௙ and 𝑓௥௘௙(𝑠, 𝑥).  The shape 
of the nominal trajectory 𝑡௥௘௙ is shown in Figure 7. The extent of 𝑊௥௘௙(𝑠) is set equal 
to 6 [cm], and it is assumed to be constant along 𝑡௥௘௙. Spatial configurations (i.e., 
action possibilities) in the section orthogonal to 𝑡௥௘௙ at the curvilinear coordinate 𝑠 are 
assumed to follow a Gaussian distribution, and 𝑓௥௘௙(𝑠, 𝑥) is the corresponding proba-
bility density function (as in Fig. 2). 𝑓௥௘௙(𝑠, 𝑥) is centred on 𝑡௥௘௙ with  𝜎௥௘௙(𝑠) = 1 
[cm] and 𝑝௥௘௙(𝑠) = 𝑝௥௘௙ = 99.73% for each 𝑠. The motor difficulty of the reference 
agent (𝐼𝐷௥௘௙) is evaluated through equation 4. For sakes of simplicity, 𝑓௥௘௙(𝑠, 𝑥) and 
𝑊௥௘௙(𝑠) are constant for each 𝑠, but in other scenarios, these features can change 
along 𝑡௥௘௙. 
The behaviour of the observed agent is expressed by the average trajectory (𝑡௔௩௚), 
while 𝑊෩∩(𝑠) is quantified by 𝑝∩(𝑠) (equation 8), 𝜂∩(𝑠) (equation 9) and 𝑊∩(𝑠). The 
probability density function 𝑓௢௕௦(𝑠, 𝑥) is defined a priori just for simulation purposes, 
while in other (observed) cases 𝑓௢௕௦(𝑠, 𝑥) must be extracted from the spatial configu-



 
 

rations 𝑞௞(𝑠) reached by the agent at the curvilinear coordinate 𝑠 (as in Fig. 3). For 
the numerical simulation, the 𝑓௢௕௦(𝑠, 𝑥) is considered as a Weibull distribution with 
scale parameter 3 and shape parameter 7, assumed to be the same for each 𝑠. To high-
light differences between observed and reference agent, five 𝑡௔௩௚ are considered; as 
for 𝑓௢௕௦(𝑠, 𝑥), the average trajectories are defined a priori for simulation purposes, 
instead of being evaluated from observed trajectories executed. From average trajec-
tory 1 (𝑡௔௩௚భ

), to 5 (𝑡௔௩ ఱ
) deviations from 𝑡௥௘௙ increase, and therefore values of 

𝑊෩∩(𝑠) decreases. The motor difficulty of the observed agent (𝐼𝐷∩), for each of the 
five average trajectories, is evaluated through equation 6. Finally, the affordance level 
𝛼 is evaluated through the ratio 𝐼𝐷௥௘௙/𝐼𝐷∩ (equation 10). Results are depicted in the 
legend of Fig. 7. 
 

 
Fig. 7 𝑡௥௘௙ and 𝑊௥௘௙(𝑠) of the reference agent, the five average trajectories (𝑡௔௩௚) of the ob-

served agent and the corresponding 𝛼 values. 

Results show the effectiveness of the proposed quantitative metrics in evaluating the 
agent’s affordance through 𝛼. By increasing the differences of motor behaviours be-
tween the two agents, the affordance level 𝛼 decreases from 0.734 (𝑡௔௩ భ

) to 0.237 
(𝑡௔௩ ఱ

). Even in the best case considered (𝑡௔௩௚ఱ
) 𝛼 is not close to 𝑝௥௘௙

ଶ = 0.9946, 
since it has not been considered the 𝑓௢௕௦(𝑠, 𝑥) of a Gaussian distribution as for 
𝑓௥௘௙(𝑠, 𝑥). Even with the assumptions made for the numerical simulation, it is shown 
that 𝛼 is able to capture the motor behaviour of both agents through the corresponding 
Index of Difficulty, and then quantify the affordance level by comparing the motor 
difficulty of the observed agent with the reference one.  

4 Conclusions and Further Research 

In this paper, a first sight on how to quantitatively evaluate the agent’s affordance has 
been given through a mathematical formalism based on the Index of Difficulty. The 
agents’ affordance can be a valuable tool to assess the performance of an agent during 
the execution of motor activities both in industrial and laboratory environments. In 



 
 

industrial context, where there is the need to carry out motor activities (e.g. material 
handling, pick and place, manual assembly activities, navigation…), the motor per-
formance depends on how the agent interacts with the environment during the execu-
tion of the task: this interaction is quantified through the agent’s affordance by ob-
serving movements executed. The novel quantitative metrics is able to take into ac-
count movements executed by the observed agent and comparing them with the motor 
behavior of a reference agent. By considering this comparison through the motor dif-
ficulty of each agent, the affordance level is obtained. 
Furthermore, in I4.0 industrial context, the quantitative metrics can be adopted also to 
optimize resource allocation problems by comparing the affordance level of different 
agents referring to the same motor activity, with the use of I4.0 technologies; the af-
fordance level 𝛼 can express the effectiveness of the human-robot collaboration, as 
well as the benefits in the adoption of new I4.0 technologies (e.g., haptic devices, 
augmented reality), during the execution of motor activities. 
The proposed methodology can be considered as a starting point to unify and stand-
ardize the evaluation of affordance under a single quantitative metrics independent 
from the field of application (ergonomics, robotics, product design…), the specific 
motor activity (pick and place, manipulation, product assembly...) and the agent (ro-
bot, operator, co-bot). 
Future steps will be focused firstly on testing the proposed quantitative metrics in real 
case studies. Once the affordance level is validated in case of experiments involving 
two dimensional-motor tasks, the model will be extended in case of three-dimensional 
motor tasks. A second goal will be focused on analyzing the agents’ features that 
affect the affordance level, such as physical/control motor features, biomechanical 
properties, skills, experience, age, etc…, in order to understand which features need to 
be improved to increase the agent’s ability. 
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