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Abstract. Within the data science and artificial intelligence fields of study, per-

formance analytics have supported performance improvements in a variety of 

different settings, including medicine, manufacturing, law and even sport envi-

ronments. The purpose of this paper is to investigate how diagnostic and predic-

tive analytics have been used as a tool to enhance assertiveness on strategic de-

cisions, providing competitive advantages in the wide field of operations man-

agement. This exploratory research analyzes the content of a bibliographic port-

folio composition built by the application of a systematic literature review per-

formed by PRISMA approach, which resulted in 48 articles. The results revealed 

an analysis of the methods and contributions have been achieved considered 

Slack performance dimensions of cost, speed, quality, flexibility, dependability 

and human resources. Findings consisted of a consistent summarized analysis of 

how diagnostic and predictive approaches have strengthened cost prediction pro-

jects, supply chain risk mitigation, quality detection improvements, predictive 

maintenance, after-sales service level and employee satisfaction and individual 

performance predictions in applications published in high quality papers, appre-

ciated by the scientific community. The main contribution of this paper is the 

reinforcement of the role of performance analytics for operations strategy. 

Keywords: Performance Analytics, Operations Strategy, Performance Meas-

urement Systems, Diagnostic Analytics, Predictive Analytics. 

1 Introduction 

With the new technological era, companies with a strong data-driven decision-making 

culture present consistent performance advantages comparing to organizations where 

personal opinions of individuals, formed by their experiences and feelings remain pre-

dominant in decision processes (Kiron et al., 2012; Davenport, 2020). Data-driven cul-

ture, however, demands best practices and mentality reinforcement among 
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professionals to be genuinely data-oriented, trusting on quantitative analysis brought 

by performance measurement systems (Berndtsson et al., 2018; Okoshi et al., 2019). 

Along big data evolution, performance analytics reached a four-dimensional step of 

descriptive, diagnostic, predictive and prescriptive, which demanded even more from 

company competences. Based on these organizational challenges of applying perfor-

mance analytics for strategic directions, the following research question is proposed: 

Which role has performance analytics played at guiding management decisions? 

A systematic literature review is used as a guidance for this investigation and papers 

are analyzed considering Slack (2009) strategic oriented dimensions of cost, speed, 

quality, flexibility, dependability and human resources in operations. Slack conceptual 

classification was selected due to his acknowledged contribution to operations strategy 

academic research over many decades. The relevance of this study is reinforced by 

identifying successful recent applications in organizations and, in order to meet this 

purpose, this paper presents a previous theoretical background including recent topics 

of data-driven culture and performance analytics developed by Chapter 2, exploring 

substantial wider fields of study related to this paper. A following research design with 

systematic literature review methodology is exposed by Chapter 3 and the subsequent 

results and conclusions are presented by Chapters 4 and 5, respectively. 

2 Theoretical Background 

The benefits of data-driven decision making have been rigorously evaluated by the 

economist Erik Brynjolfsson and his colleagues at MIT and from Penn’s Wharton 

School, in an investigative study of how data-driven decisions positively affects com-

pany performance. According to Provost and Fawcett (2013), Brynjolfsson research 

has developed a measurement to statistically test and classify the respective level of 

oriented management by data in organizations. The study concluded that the higher the 

level of data orientation, the more profitable it becomes, since the best-ranked compa-

nies in the data-based ranking showed a 4 to 6% increase in productivity, greater return 

of investment, better assets utilization and market value. 

 It is necessary to reinforce, however, that isolated data alone do not have a clear 

meaning and do not imply guidelines for actions. For Light et al. (2004), the highest 

step towards pure data is the transformation of data into strategic information and this 

step always depends on the analysis and understanding of the professionals who act 

upon them. Therefore, data converted into information receive meaning when con-

nected to a context. An information may or may not be relevant depending on its nature 

and object of analysis. Knowledge, on the other hand, is the collection of information 

considered useful and eventually processed to guide action. The knowledge, hence, is 

created through a sequential process. Light et al. (2004) argue that in case of produc-

tivity information, for example, the managerial ability to relate connections among per-

formance indicators of different dimensions to act about it represents knowledge. 

 Some researchers such as Choo (1998) and Duan and Cao (2015) also praise the 

value of information for companies and defend the best way to analyze the environment 

in which data is inserted is not limited to understanding, but to assess information as 



 
 

knowledge that becomes available and make it useful at opportune moments. Mayer-

Schonberger and Cukier (2013) compare the value of data to an iceberg floating in the 

ocean, where only a single small fraction is visible while most of it is submerged and, 

consequently, only innovative companies are able to extract deep knowledge and con-

vert value into strategic advantages. 

 According to Duan and Cao (2015), the definition of data-driven principles is aligned 

with the organizational culture, which is conceptualized by a complex union of values 

and beliefs that give rise to the essence of how a company conducts its business. Dav-

enport (2020) also places data-driven culture as a driver of an organization with a com-

mon vision and clear goals, with full transparency of the contribution of those involved. 

However, Vidgen et al. (2017) and Esteller-Cucala et al. (2020) argue that for the real 

transformation of a traditional company into a data-driven company, it is a premise to 

invest in procedures for organizational change, not just filling gaps in knowledge and, 

in addition, it is a strong request to work on changing the mentality of professionals, 

ensuring leadership involvement with effective communication. The effort to achieve 

data-driven orientation, however, goes a step beyond and also implies assertiveness to 

establish the proper analytics dimension for each management purpose. Therefore, 

within data science field, a conceptual framework classifying four branches of perfor-

mance analytics has been explored (Kim and Yu, 2015; Lepenioti et al., 2020). The 

overview of its four-dimensional classification is exhibited by Figure 1.  

Descriptive analysis basically describes a phenomenon, unraveling what happened 

through the visualization of scenarios, diagnostic analysis assesses goes a step further 

investigating why certain events or occurrences may have happened through statistics 

and convenient hypothesis tests to confirm theories or even find root causes. While 

descriptive and diagnostic analytics are focused on the past, predictive analytics is fo-

cused on predicting potential future outcomes based on historical databases. 

 

 

Fig. 1. Four dimensions of data analytics. 

Finally, prescriptive analysis goes beyond describing, explaining and predicting, im-

plying what actions should be taken in the future to optimize the processes, offering 

smart decisions through data engineering simulations combined with algorithms. 

3 Research Design 

The present research consists of developing a systematic literature review with the am-

bition to identify recent applications of diagnostic and predictive analytics and their 

respective contributions to operations strategy. For this reason, the first methodological 

step involved the definition of the search terms, connecting both two topics contem-

plated by the present study: performance analytics and operations strategy. Their 



 
 

respective search terms are presented by Table 1, which were chosen to be commonly 

used as synonyms in performance analytics and operations strategy environments. 

Table 1. Research axes. 

 
 

 The method selected for the systematic literature review is the PRISMA, Preferred 

Reporting Items for Systematic review and Meta-Analysis (2009) and the procedural 

performed steps are described by Figure 2. 

 

 

Fig. 2. Systematic Literature Review. 

 In the identification stage, as a result from search of the terms found in Scopus da-

tabase resulted in 7,256 and 2,328 from Web of Science together with additional pub-

lishers. In order to restrict articles from the areas of interest, selection tools were ap-

plied, according to the selection criteria 1 and 2 of Table 2 for Scopus and Web of 



 
 

Science, respectively, resulting in a total of 469 pre-selected works for eligibility after 

the removal of duplicates. 

Table 2. Criteria and their filters. 

 
 

 In the following step, CR-3, availability filter was applied, limiting open-sources and 

then exclusively English written papers, CR-4, published exclusively in academic jour-

nals or international conferences (CR-5), removing 296 and selecting 173 articles for 

the eligibility stage. In the eligibility stage, CR-6, articles with low scientific relevance 

were excluded, following the criteria that articles with date of publication before 2016 

were considered only with citation number higher than fifty. Finally, at CR-7, full-pa-

pers were completely read, rejecting some papers that did not properly address the re-

search ambition, electing a total of 48 papers with strong contribution to be included in 

the bibliographic portfolio composition, which can be fully found in Appendices. 

4 Results 

The bibliographic portfolio presents forty-eight articles, composed 87.5% by journals 

and 12.5% by international conferences. Figure 3 presents the portfolio over the years, 

revealing the highest concentration belongs to the last five years. 

 

 

Fig. 3. Portfolio over the years. 

 The bibliographic composition presents a very diverse portfolio and with low reoc-

currence of journals. However, Expert Systems with Applications is the journal with a 

highlighted position, with a total of five papers, followed by the International Journal 



 
 

of Production Research, contributing to three publications. Other high-impact journals 

were also honored, as exhibited by Figure 4. In relation to the six conference papers, 

CIRP Conference on Manufacturing Systems is the only that appeared twice. All the 

other four conference papers, on the other hand, had the scope related to Industry 4.0. 

 

 

Fig. 4. Journals and Conferences. 

 In the perspective of the citation level, presented by Figure 5, it is noticeable that 

articles from the last five years have a lower accumulation of citations comparing to 

older ones, which can be possibly explained by the fact that they are more recent and 

consequently had little time exposure to the scientific community. 

 

 

Fig. 5. Journals and Conferences. 

 Among the research centers present in the portfolio, United States is the country with 

the greatest portfolio contribution, possibly explained by the advanced artificial intelli-

gence achievements enabled by the technological investments inside American compa-

nies and universities. Countries such as India, China, Italy and United Kingdom also 

occupy a prominent place, as exhibited by Figure 6. Most of the countries, however, 

had a single representation in the portfolio, which strongly implies that the topic has 

been widely researched by several university centers. 



 
 

 

 

Fig. 6. Geographic heat-map. 

 Although there is no reoccurrence among the authors, some researchers of the most 

impactful works are Gian Susto, from the Information Engineering Center at the Uni-

versity of Padova, Italy, Maritza Correa, from the Instituto de Automática Industrial in 

Spain, and Cavalcante and Frazzon, from Mechanical Engineering research at Federal 

University of Santa Catarina, Brazil. Appendices section presents the list of biblio-

graphic portfolio composition and their respective numerical references for content 

analysis exhibited by Table 3, that summarizes portfolio methods and contributions. 

The systematic review of the literature content was analyzed into six perspectives: 

cost, speed, quality, flexibility, reliability and organizational development, related to 

the perspective of Slack et al. (2009) performance dimensions. Organizational devel-

opment was added to this classification in order to include the strategic area of human 

development proposed by the same author, since this pillar corroborates to the compet-

itive result of the five dimensions of cost, speed, quality, flexibility and dependability. 

It is an engaging perspective to match recent applications in performance analytics, 

since Slack conceptual classification was extensively acknowledged in operations man-

agement research. 

 The building of the proposed summary enabled the identification of recent contribu-

tions of performance analytics to diagnose the impact of lean practices on cost reduc-

tion, manufacturing costs prediction projects and dynamic replenishment of policies for 

inventory management. Moreover, mitigation of delay risks in supply chain and de-

mand planning improvements with accurate cycle time forecasting have been also en-

hanced. In relation to quality perspective, failure detection projects have been contrib-

uting to reach better quality standards through the previous identification of process 

deviations. Machine learning projects focused on predictive maintenances and OEE 

monitoring have been strengthening flexibility in operations, minimizing the impact of 

unexpected events together with a dynamic production planning. 



 
 

Table 3. Performance analytics contribution to operations strategy. 

OBJECTIVE METHOD CONTRIBUTION 

 

 

Cost management 

of materials and  

processes 

D 

 

 

 

 

 

P 

Multiple regression analysis 

[16, 37], Variance Analysis [16] 

 

ANN [4, 47], GBT [30] Linear 

Regression [12, 30], Naive 

Bayes [4], C4.5 Algorithm [39], 

GBT [30], SVR [30, 47] 

Impact of lean practices on 

cost reduction [16, 37] 

Manufacturing costs 

prediction [4, 12, 30, 47] 

Inventory management 

policies to minimize costs 

[39] 

 

 

Supply and 

Operations 

Management 

 

 

 

P 

Decision Tree [6, 7], Naive 

Bayes [7, 33], ANN [7, 44], K-

NN [11], GNN [28], Random 

Forest [7, 8, 9,11], SVM [6, 7, 

9, 10], Logistic Regression [9], 

Linear Regression [9, 10, 11, 

26, 44] 

Mitigation of delay risks with 

strategic supplier selection [6, 

9,11] demand planning [7, 8, 

10, 28], cycle time forecast-

ing [33, 44] and inbound  

logistics activities [26] 

 

 

Quality 

Management 

D 

 

 

 

P 

Linear Regression Analysis, 

Correlations, Variance Analysis 

[19, 34] 

 

Naive Bayes [14], ANN [14], 

Logistic Regression [17] 

XG-Boost [38], Random Forest 

[38, 43] 

Properties of quality  

deviations identification [19, 

34] 

 

Detection of quality failures 

in production processes [14, 

17, 38, 43] 

 

 

Flexibility and 

Scheduling 

Deviation 

Management 

D 

 

 

P 

Monte-Carlo Simulation [48], 

Ishikawa and Pareto [32] 

 

ARIMA [25], KNN [42], GTB 

[3, 5], Random Forest [3, 5], 

XG-Boost [5], Linear Regres-

sion [5] Deep Q Network [45], 

SVM [3, 5, 42] 

Identification of OEE highest 

losses [32, 48] 

 

Predictive maintenance to 

minimize unexpected 

interruptions [3, 5, 42, 25] 

and dynamic production 

planning considering  

unexpected events [45] 

 

 

 

Dependability 

Management 

 

 

 

P 

ANN [1, 15, 29, 31, 41], 

ARIMA [36], Linear Regres-

sion [1], SVM [15, 31, 36, 41], 

Decision Tree [24, 41], Random 

Forest [15, 41, 46], KNN [36], 

Naive Bayes [15, 36, 41], 

Logistic Regression [41], 

Genetic Algorithm [27, 46], 

CNN [40] 

Integration of quality in after-

sales services [27], forecasts 

for meeting deadlines [36], 

assertiveness in diagnoses 

[24, 29, 31, 40, 46] and 

robustness in the manage-

ment of hospital operations 

[1, 15] 

 

 

 

Human Resources 

Management 

D 

 

 

 

 

 

P 

Correlation [22, 35], Linear 

Regression Analysis [13, 35], 

Confirmatory Factor Analysis 

[22] and Mann-Whitney U Test 

[21] 

 

Decision Tree [2, 20], Naive 

Bayes [2, 23], ANN [18, 20] 

Identification of the effects of 

leadership styles and their 

respective performance 

impacts [13, 21, 22, 35] 

 

 

Employee performance fore-

cast [2, 20, 23] and turnover 

rates [18] 



 
 

 

 From dependability perspective, predictive analytics has been supporting the inte-

gration of quality in after-sales services, accurate deadline commitment and more as-

sertive diagnoses of diseases and patient assistance in healthcare environment. Finally, 

in relation to human resources dimension, diagnostic analytics projects have enabled 

the identification of leadership styles and their assessed impacts on organizational per-

formance while predictive approaches have been supporting employee performance 

forecasts and turnover rates based on historical events. 

5 Conclusion 

The developed systematic review presents a simple and consistent investigative over-

view of how diagnostic and predictive analytics projects have supported organizations 

to achieve competitive advantages in many different dimensions. This paper has suc-

ceeded on connecting the classic operations strategy concept to the recent topic of per-

formance analytics approaches, providing the built of a summary of meaningful studies 

and their respective contributions through Slack et al. (2009) perspective. 

Limitations, however, are useful to guide further research directions. In this context, 

although results revealed a preliminary analysis, bringing an overview of how perfor-

mance analytics role enabled strategic decisions in the last years, the bibliographic com-

position is still too small for a meta-analysis, demanding expansion in further databases 

or even excluding the criteria related to the restriction of the last years, following an 

advanced effort to connect old studies to the new ones and investigate how projects 

have evolved and reinforced by operations strategy. 

Furthermore, the present literature review can also be analyzed through other con-

ceptual perspectives in order to extend findings to new contexts. 
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