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Abstract. The present work proposes a decomposition scheme in production planning based on linear 
programming, which couples the concept of clearing function and supposes a dynamic environment to 
plan a production along a planning horizon. Where planning parameters such as demand, production 
capacity, production resources, and other parameters change over the planning horizon. In general, this 
requires the planner, freeze the production plan for some blocks of periods or rethink the production 
plan of each period, with obvious implications on production planning costs. The Plan shall be designed 
and implemented in the following way: At the beginning of any period of the planning horizon, from 
the first, a set of decisions on a production is taken based on available information under a supervision 
of a decision support system represented by the mathematical model that acts according to the latest 
available information, period to period. This mechanism suggest that the number of planned periods is 
of the magnitude of n squared, much larger than the number of periods to be performed, because for 
each execution period, the remainder of the planning horizon is re-planned. The scheme we are 
proposing in this paper addresses this drawback and provides a lower cost solution to this production 
planning problem. This proposed scheme is implemented by an algorithm which is analyzed in detail 
and after, numerically illustrated.  
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1 Introduction  

Currently, manufacturing companies are increasingly demanding that production planning be supported by 
effective and efficient decision making systems so that they can achieve their strategic objectives using the 
available resources in the best possible way. 
 Given this scenario, a large number of medium and large manufacturing companies have been 
implementing sophisticated decision support systems, such as Master Production Schedule (MPS), which 
aims to establish which end products will be manufactured in a given period of time and in what quantity; 
Material Requirement Planning (MRP), which allows that based on the production decisions of the final 
products it is determined what, when, and how much to produce [1] and Manufacturing Resource Planning 
(MRP II). However, these models don't even have any objective action in face of eventual capacity 
limitations, besides that, these models only look for a viable solution, without any concern with the quality 
of the solution found, because it indexes the quality of the solution based on stock and Lead Time and more 
importantly, without considering production costs. 
 As a consequence of the deficiencies of these models in dealing with capacity constraints, since 
the 1950s, models that seek optimal solutions such as Linear Programming (LP) models have been widely 
used to solve production planning problems. And these have been studied by several authors over several 
decades [2]; [3];[4]; [5]. 
 However, production planning problems require constant updates, mainly due to the environment 
in which they are inserted and even the responsible planner. Due to this, that is, the new information that is 
fed into the model, the planner is forced to replan the rest of the planning horizon, and this, in any production 
process, represents a waste of resources and generates nervousness in the planning and in the system. This 
is particularly severe when the planning horizon is long and the environment is dynamic, that is, there is a 
greater uncertainty in the input parameters.   
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According to Wollmann [6], these aspects of production planning, which require sequential 
decisions over time, can be referred to as a Rolling Planning approach. The Rolling Planning rule works 
when the planning horizon is fixed with a fixed number of periods ahead; the first production planning is 
formulated covering all periods of the planning horizon; production planning is performed only on the part 
concerning the first period, this process is performed repeatedly until the number of periods runs out [5]. 
Therefore, each of the production planning horizons is a shorter period than the previous one, until it ends, 
and, in this sense, it is a decomposition process. Within this context, the present work proposes a method 
for decomposing the mathematical model of production planning based on linear programming that couples 
the concept of dynamic environment to plan production over a production planning horizon, where planning 
parameters such as demand, production capacity, production costs, among other parameters, vary over the 
planning horizon. 

2 Theoretical Background 

2.1 Production Planning Models      

According to Gaither [7], MRP is a computerized system that takes the Master Production Schedule (MPS) 
as data, explodes it into the quantity required for each period in the planning horizon, reduces it by 
comparing it with the respective stocks or receipts, and thus develops an order schedule. The same author 
states that "the outputs of the MRP systems dynamically provide the materials program for the future - the 
quantity of each material needed in each period to support the MPS." 

It is important to emphasize that MRP starts from the vision of the future of the need for products 
and then comes "exploding" backwards according to lead time, level by level, the needs of components. 
Therefore, this system is known as the "backward scheduling" logic ([8]; [9];[3]; [10];[11]). 

Baker [8], defines that the purpose of the MRP logic is to try to answer the question, "What do we 
need and when?" In order to consider this question, the goal is to treat the process systematically, 
determining purchasing and manufacturing plans based on net requirements. This mechanics is done by 
sequences of steps, called: Explosion; Network adjustment; Lead time and lot size. 

However, MRP has some problems in its system, some of these weaknesses need to be pointed out 
for comparison of the studied tools, which support the proposed model, they are: (i) Unviability of the MRP 
scheduling capacity, (ii) Lead times planned for a long period of time, (iii) System instability ([8]; [3];[4]). 

With the drawbacks presented by the MRP system, over time new procedures were emerging and 
with the growth of technology employed in computers came the emergence of the MRP II, this, adding a 
possibility of processing and more agile communication between more sectors of the organization. The 
MRP II is based on an integrated system, having an important utility in the midst of demand changes [11]. 
It has allowed to explore any change that an operation needs to make. 

However, even with the emergence of MRP II, this new model did not solve the problems faced 
with eventual capacity limitations detected. Because of this, since 1950, mathematical programming models 
have been widely used to solve production planning problems, which will be addressed next. 

2.2 Linear Programming 

Linear Programming (LP) is a mathematical programming in which the objective function and the 
restrictions assume linear characteristics, having several applications in management control, including 
problems of production, mixing, transportation, determination of inventory policy, cash flow studies, study 
of information system among others, in summary, problems of use of available resources that seek optimal 
use of them, observing limitations imposed by the production process or by the market. For [12] linear 
programming is used when the objective is to solve problems that consider the optimal allocation of scarce 
resources throughout production or in the performance of activities. 

As previously mentioned, this work treats in a generalized way the production problem addressed 
in [5], where a production planning scheme, initially proposed by [1], and complemented by [13], in which 
he proposed a mathematical model for production planning, using decomposition, considering the 
functional constraints as integers, moreover, relaxing the integrality constraint. In this approach, according 
to [6], the classical LP (1) model for production planning problems can be formulated as a sparse structured 
linear problem, whose structure is quite suitable for decomposition, and which describe cumulatively the 
resources whose leftovers can be transferred from one period to the next, we consider the following 
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production planning problem: Let 𝑋௜௝  be the production level of product 𝑖 in period 𝑗. Let 𝑏௞௜ be the number 
of components 𝑘 used to produce one unit of product 𝑖. 𝑅௝,is the amount of labor resource (in units of 
standard time) available during period 𝑗, and that any unused labor resource from period 𝑗 cannot be carried 
out to period 𝑗 +1. Let 𝑆௞௝be the supply of components 𝑘 available for consumption in period 𝑗, and let 
𝐷௜ , be the maximum demand for product 𝑖 until the end of the planning horizon. 

      

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ෍ ෍ 𝐶௜௝

ே

௜ୀଵ

𝑋௜௝

்

௝ୀଵ

 

 
s.t.    

             ෍ ෍ 𝑏௞௜𝑋௜௝  ≤     ෍ 𝑆௞௝

௧

௝ୀଵ

ூ

௜ୀଵ

௧

௝ୀଵ

  ∀𝑘, ∀𝑡, 

                                                        ෍ ℎ௜𝑋௜௝

ே

௜ୀଵ

≤  𝑅௝, ∀𝑗,                                                  (1) 

 
                  𝑋௜௝  ≤  𝐶௜௝ , ∀𝑖, ∀𝑗, 

     ෍ 𝑋௜௝

்

௝ୀଵ

≤ 𝐷௜ , ∀𝑖. 

 
         𝑋௜௝ ≥ 0, ∀𝑖, ∀𝑗 

 

   In continuation, [6] added the lead time issue to this model, to consider the variability that exists in a 
production system, and to consider the lead time it was necessary to introduce the Clearing Function (CF) 
concept to the model. To complement this approach, [5] added the Rolling Planning rule to this problem, 
with the purpose of avoiding rework and unnecessary costs with production planning throughout the 
planning horizon, being able to consider period to period, allowing for the updating of model parameter 
information. 

3 Proposed Model 

In this scenario, this paper proposes to continue this exposed problem, adding to the model the decision 
variables regarding the level of inventory, with values of costs of handling high inventories, to highlight 
the loss of income in the period that there is inventory, as well as the restrictions associated with the 
inventory balance. 
3.1  Sets and Indices 

The proposed model is described below (1): 
Index: 
𝑗 – Indicates the period  𝑗 = 1,2, … , 𝑇. 
𝑖 – Indicates the product  𝑖 = 1,2, … , 𝑁. 
𝑘 – Indicates the component  𝑘 = 1,2, … , 𝐾. 
3.2 Decisions Variables   

𝑋௜௝  – Production level of product i on period j; 
𝐼௜௝  –  Inventory level of product i on period j; 

3.3 Parameters 

𝑐௜௝  – Unit contribution of product production i on period j; 
ℎ௜௝  – Unit cost of product inventory i on period j; 
𝛾௜௝  – Nominal production capacity, estimated by CF, of the product i period j; 
𝐷௜  – Product Demand i; 
𝑑௜  – Minimum product demand i period j; 
𝑏௞௜  – Number of components k used for the production of the product of a i. 
𝑆௞௝  – Number of components of type k, available to be consumed at the beginning of j; 
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𝑅௝ – Available labor (in standard units of time) to be used in j; 
ℎ௜  – Standard time required to produce one unit of the product i. 
3.4 Objective Function:  

               ∑ ∑ ൛൫𝑋௜௝ + 𝐼௜௝ିଵ൯𝑐௜௝ − 𝑐௜௝𝐼௜௝ −  ℎ௜௝𝐼௜௝ൟூ
௜ୀଵ

௃
௝ୀଵ ; 

 
 

The function evaluates the yields in relation to the production level and what has been kept in stock, i.e., 
turnover accounts for products sold and those still in stock. 
3.5 Restrictions: 

1- Restriction of the components of each product: 

෍ ෍ 𝑏௞௜𝑋௜௝ ≤ ෍ 𝑆௞௝

௧

௝ୀଵ

ூ

௜ୀଵ

௧

௝ୀଵ

              , ∀𝑘, ∀𝑡 

It ensures that the component quantity used in the production of each product is less than or equal 
to the total material resources available in that period. 
2- Inventory Balancing Restriction:  

𝐼௜,௝ = 𝐼௜,௝ିଵ + 𝑋௜,௝ − 𝐷௜,௝                          , ∀𝑖, ∀𝑗 
 

It ensures the balance between stock levels and production to meet what is demanded in each 
period. 
3- Capacity restriction 

𝑋௜௝ −  𝛾௜௝ ≤ 0                              , ∀𝑖, ∀𝑗 
It guarantees that the production of product i period j is according to the available capacity in that 

period, estimated by CF. 
The capacity parameter 𝛾௜௝  of this model is governed by the Clearing Function concept [4]. 

Recently several authors, have proposed models that use CF concepts, such as [13] and more recently by 
[6];[14];[5];[15]). As discussed in [4] and in most of the studies cited above, it is assumed that the CF is an 
increasing concave function with decreasing rate, which when coupled to the Linear Programming turns 
the model a convex programming model. The scholars who approach this model use some resources to 
linearize the CF by means of affine straight lines in order to obtain a LP model. Since this mathematical 
programming model used considers CF as a model parameter, no further discussion on this subject will be 
dealt with in this paper, only considerations already mentioned. An application considering other service 
levels can be seen in ([19];[20];[21]). 
4 – Demand Constraints 

∑ 𝑋௜௝
்
௝ୀଵ ≤ 𝐷௜                               , ∀𝑖, ∀𝑡 

Demand is an external parameter to the model, and since we have a maximization model, this 
constraint prevents all production from being done in a single period, ensuring the model's feasibility. 
5 – Minimum Demand Constraints 

  
𝑋௜௝ ≥   𝑑௜௝                               , ∀𝑖, ∀𝑗 

                    
It also guarantees the feasibility of the model by having a minimum production to be realized. 

6- Restriction of Labor Resources 
 

∑ ℎ௜𝑋௜௝
ூ
௜ୀଵ ≤  𝑅௝                , ∀𝑖, ∀𝑗 

 
It ensures that all the available labor resource is used throughout the period.                                           
Thus, the proposed linear programming model is presented below (2): 
 
 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ෍ ෍൛൫𝑋௜௝ + 𝐼௜௝ିଵ൯𝑐௜௝ − 𝑐௜௝𝐼௜௝

ூ

௜ୀଵ

௃

௝ୀଵ

−  ℎ௜௝𝐼௜௝ൟ 
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𝑠. 𝑎 ෍ ෍ 𝑏௞௜𝑋௜௝ ≤ ෍ 𝑆௞௝

௧

௝ୀଵ

ூ

௜ୀଵ

௧

௝ୀଵ

 ∀𝑘, ∀𝑡 

𝐼௜,௝ = 𝐼௜,௝ିଵ + 𝑋௜,௝ − 𝐷௜,௝ ∀𝑖, ∀𝑗 

𝑋௜௝ −  𝛾௜௝ ≤ 0 ∀𝑖, ∀𝑗     (2) 

෍ 𝑋௜௝

்

௝ୀଵ

≤ 𝐷௜   

 
                               𝑋௜௝ ≥   𝑑௜௝                  

 
∀𝑖, ∀𝑡 
 
 
∀𝑖, ∀𝑗 

෍ ℎ௜𝑋௜௝

ூ

௜ୀଵ

≤  𝑅௝ 

 

∀𝑖, ∀𝑗 

                         𝑋௜௝ ≥ 0, 𝐼௜௝ ≥ 0, 𝐼௜଴ = 0.  

4. Decomposition of the Proposed Model 

The decomposition scheme of the proposed mathematical model (2) ensures that all planning horizons have 
the subproblems as sub horizons of the entire planning horizon and use the current information available in 
each period of the planning horizon. In order to discuss the decomposition of model (2) it is necessary to 
define the representation of the following vectors, for each period of the planning horizon. 

 

    (1)   𝑥(௝) = ൫𝑥ଵ௝ , 𝑥ଶ௝ , … , 𝑥ே௝൯
்

, 𝑗 = 1, 2, … , 𝑇; 
(2)   𝐵 = (𝑏௞௜), 𝑘 = 1, 2, … , 𝐾, 𝑖 = 1, 2, … , 𝑁; 

 (3)  𝑆(௝) = ൫𝑆ଵ௝ , 𝑆ଶ௝ , … , 𝑆௄௝൯
்

, 𝑗 = 1, 2, … , 𝑇; 

                                                  (4)  𝑅(௝) = 𝑅௝, 𝑗 = 1, 2, … , 𝑇; 
(5)  𝐷(௝) =  (𝐷ଵ, 𝐷ଶ, … , 𝐷ே)்; 

                                                   (6)  𝑐(௝) = ൫𝑐ଵ௝ , 𝑐ଶ௝, … , 𝑐ே௝൯, 𝑗 = 1, 2, … , 𝑇; 
(7)  ℎ = (ℎଵ, ℎଶ, … , ℎே); 
(8)  𝛾(௝) = ൫𝛾ଵ௝ , 𝛾ଶ௝, … , 𝛾ே௝൯,   𝑗 = 1, 2, … , 𝑇; 
(9)  ɵ(௝) = ൫ɵଵ௝ , ɵଶ௝ , … , ɵே௝൯,   𝑗 = 1, 2, … , 𝑇; (Regarding the labor force 

maintenance vector) 
(10)  𝐼, Matrix Identity (relative to size). 

 

Model (2) couples the Clearing Function with the linear programming model to account for the 
nonlinear variability of production throughput with workload and system runtimes. Since the Clearing 
Function is defined for each resource in each period of the planning horizon, it can be combined with the 
decomposition scheme of the mathematical model. However, in this paper the Clearing Function is not 
discussed further.  

The decomposition scheme follows the following process and ensures the rolling planning scheme 
defined here: assuming that the planning horizon 𝑇 is divided into 𝑀 blocks of 𝑃 periods, that is, 𝑇 = 𝑀 x 
𝑃. Then, the Matrix 𝔸 block of the model variables (2) and the right-hand side vectors, referring to 
resources, 𝔽 as can be seen below (3) is defined. Where each block of the matrix, 𝐵, 𝐼, ℎ, is respectively the 
matrix 𝐵௄ × ே, the matrix 𝐼ே × ே ,  , a vector ℎଵ × ே,, and a vector 1 is the sum of the vector. As a result, the 
matrix 𝔸 is an 𝔸[(௄ ା ே ା ଵ ା ଵ) ×୘] × [(୘ ×୒)]  matrix, in which it is then decomposed into 𝑀 blocks of size 𝑃, 
and according to the vector 𝔽. 
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   𝔸 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝐵     
𝐼     
ℎ     
𝟏     
𝐵 𝐵    
𝐼 𝐼    
0 ℎ    
0 𝟏    
⋮     
𝐵 𝐵 𝐵 … 𝐵
𝐼 𝐼 𝐼 … 𝐼
0 0 0  ℎ
0 0 0  𝟏⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 , 𝔽 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝑆(ଵ)                                    
 𝐷(ଵ)                                      
𝑅(ଵ)                                     
𝛾(ଵ)                                      

𝑆(ଵ) + 𝑆(ଶ)                         

𝐷(ଶ)                                      
0 + 𝑅(ଶ)                             

0 +  𝛾(ଶ)                             
⋮                                        

𝑆(ଵ) +  𝑆(ଶ) + ⋯ + 𝑆(ெ)

𝐷(ெ)                                    
0 + 0 + ⋯ + 𝑅(ெ)          

0 + 0 + ⋯ + 𝛾(ெ)          ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

          (3)                     

 
Each block of matrix 𝔸 will be numbered as 𝔸(௝), and the right hand side the vector 𝔽, as 𝔽(௝). 

Since 𝔸(௝) is fixed, however the size of the blocks is held constant, this will be referred to as matrix 𝔾. The 
defined vectors are: 

 

                          𝑋(ଵ) = ൮

𝑥(ଵ)

𝑥(ଶ)

⋮
𝑥(௉)

൲ ; 𝑋(ଶ) = ൮

𝑥(௉ାଵ)

𝑥(௉ାଶ)

⋮
𝑥(ଶ௉)

൲ ; ⋯ ; 𝑋(ெ) = ൮

𝑥(ெ௉ି௉ା )

𝑥(ெ௉ି௉ାଶ)

⋮
𝑥(ெ௉)

൲,                                         (4) 

 

                         𝐶(ଵ) = ൮

𝑐(ଵ)

𝑐(ଶ)

⋮
𝑐(௉)

൲ ; 𝐶(ଶ) = ൮

𝑐(௉ ା ଵ)

𝑐(௉ ା ଶ)

⋮
𝑐(ଶ௉)

൲ ; ⋯ ; 𝐶(ெ) = ൮

𝑐(ெ௉ି௉ା ଵ)

𝑐(ெ௉ି௉ ା ଶ)

⋮
𝑐(ெ௉)

൲.                                       (5) 

 
The data update vector  𝕃ℕℂ

(௝) = 𝐷(௝) −  ∑ 𝛾(௧)்
௧ୀ௝ାଵ , 𝑗 = 1, … , 𝑀 − 1, 𝕃(ெ) = 0, where 

 𝕃ℕℂ
(௝)represents the smallest output per period 𝑗, and the update vector of dados 𝕃𝕄𝕆

(௝) ⟵ ℎ்𝐷(௝) −

ℎ் ∑ 𝜃(௧)்
௧ୀ௝ାଵ , where  𝕃𝕄𝕆

(௝) represents the labor resource for period j, in which both the production and 

labor resource vector ensures feasibility for the problem. 𝐷(௝) is the maximum attainable demand of the 
planning horizon, i.e., the demand from period 𝑗 to the end of the planning horizon in a cumulative manner. 
Considering the decomposition of the proposed model the following algorithm was defined. 
Algorithm 
Initialization 
Solve the subproblem. 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒   𝐶(ଵ)𝑋(ଵ) 
𝑠.  𝑡.                                                                               𝔾 𝑋(ଵ)   ≤ 𝔽(ଵ)                                                         (6) 

                          𝑋(ଵ)   ≥ 𝕃ℕℂ
(ଵ) 

                            𝑋(ଵ)   ≥ 𝕃𝕄𝕆
(ଵ) 

 
 
Iteration 
TO 𝑗 = 2, … , 𝑀, upgrade the vectors  𝔽(௝), 𝕃ℕℂ

(௝) e  𝕃𝕄𝕆
(௝) as follows, 

 
                                                     𝔽(௝)  ⟵  𝔽(௝) + ൣ𝔽(௝ ି ଵ) −  𝔾𝑋෠(௝ ି ଵ)൧ ,                                                 (7)  

 
                                                      𝕃ℕℂ

(௝) ⟵ 𝐷(௝) − ∑ 𝛾(௧)்
௧ୀ௝ାଵ  , 

 
                                                      𝕃𝕄𝕆

(௝) ⟵ ℎ்𝐷(௝) − ℎ் ∑ 𝜃(௧)்
௧ୀ௝  , 

 
          𝐷(௝)  ⟵  ൣ𝐷(௝) −  𝑋෠(௝ – ଵ)൧, ൫𝐷(ଵ) = 𝐷൯, 𝐷(௝) = 𝐷(ଵ) − ∑ 𝑋෠(௜)௝ିଵ

௜ୀଵ  

 
               And solve the subproblem, 
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𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒   𝐶(௝)𝑋(௝) 
                                                                            𝑠.  𝑡.       𝔾 𝑋(௝)   ≤ 𝔽(௝)                                             (8) 
                                                                                                  𝑋(௝) ≥ 𝕃ℕℂ

(௝) 
                            𝑋(௝)   ≥ 𝕃𝕄𝕆

(௝) 
 
 
               𝑋෠(௝ ) represents an optimal solution for 𝑗(௘௦௜௠௢) subproblem 𝑗 = 1, . . , 𝑀.  
 

The following theorem proves that the algorithm presented above implements a rolling-planning 
rule that spans a fixed planning horizon that reduces the planning horizon by one period, each period of its 
execution. 

Theorem.  Assume that we have a fixed planning horizon of T periods, and a production plan for 
that planning horizon. Assume further that the plan must be remade at the end of each period until the end 
of the planning horizon, in other words, throughout the planning horizon production is planned to cover the 
entire planning horizon, but executed only for the next period, until the end of the planning horizon. 
Assuming that all parameters of the mathematical model (2) are known, but, can be varied from one period 
to another and that 𝑋∗ = ൫𝑋∗(ଵ)

, 𝑋∗(ଶ)
, … , 𝑋∗(ெ)

൯ is an optimal solution to problem (1) and that has 
sufficient resources to produce and meet the estimated demand at the end of the planning horizon. 
Therefore, algorithm (6) and (7) is defined correctly, and if  𝑋෡ (௝), 𝑗 = 1, 2, … , 𝑀 are optimal solutions to 
the subproblems M. The combination of vectors of the solutions 𝑋෡ = ൫𝑋෠(ଵ), 𝑋෠(ଶ), … , 𝑋෠(ெ)൯, is also 
considered an optimal solution to problem (1). 

Proof.  
To prove the statement of the above theorem, first, observe the problem (1) and the set of 

subproblems defined by Algorithm (6) and (7) have the same set of information, the same set of variables, 
and the same schedule. Therefore, it is reasonable to assume that they have the same set of solutions. 
For the purpose of carrying out the formal proof, mathematical induction has been used. First, it will be 
proved that the theorem is true for periods of T = 2, and further, assuming the result is true for periods of T 
= k, it will be proved that it is also true for periods of T = k + 1, therefore, concluding the result is true for 
any natural number of periods T. 

Proof for T=2 periods.  
Suppose that 𝑋∗ = (𝑋∗(ଵ),  𝑋∗(ଶ))  is an optimal solution to problem (P), 

                                           𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒   𝐶(ଵ)𝑋(ଵ) + 𝐶(ଶ)𝑋(ଶ) 
                                               𝑠. 𝑡.           𝔾𝑋(ଵ)                   ≤  𝔽(ଵ), 
                                                  𝔾𝑋(ଵ) + 𝔾𝑋(ଶ)          ≤ 𝔽(ଵ) + 𝔽(ଶ),                   (P) 
                                                   𝑋(ଵ),  𝑋(ଶ)                   ≥ 0. 

Problem (P) is problem (1) for 𝑇 = 2 periods, or two period blocks. For this, the following 
statements are true: 

𝔾𝑋∗(ଵ) ≤ 𝔽(ଵ) , e 0 ≤ 𝑋∗(ଵ) ≤ 𝛾(ଵ); 
𝔾𝑋∗(ଵ) + 𝔾𝑋∗(ଶ) ≤ 𝔽(ଵ) + 𝔽(ଶ), 0 ≤ 𝑋∗(ଶ) ≤ 𝛾(ଶ),e𝑋∗(ଵ) +  𝑋∗(ଶ) ≤ 𝛾(ଵ) +  𝛾(ଶ) , 

𝐶(ଵ)𝑋(ଵ) + 𝐶(ଶ)𝑋(ଶ) ≤ 𝐶(ଵ)𝑋∗(ଵ) + 𝐶(ଶ)𝑋∗(ଶ) ≤ 𝐶(ଵ)𝛾(ଵ) + 𝐶(ଶ)𝛾(ଶ), for any feasible solutionl   
𝑋 = ൫𝑋(ଵ), 𝑋(ଶ)൯. 

Now suppose that 𝑋෠(ଵ)  is an optimal solution to the first subproblem, defined by Algorithm (6) 
and (7). Obviously, 𝑋෠(ଵ) ≤ 𝑋∗(ଵ) + 𝑋∗(ଶ) and in addition: 
 

𝔾𝑋෠(ଵ) ≤ 𝔽(ଵ), 0 ≤ 𝑋෠(ଵ) ≤ 𝛾(ଵ), 
𝑋෠(ଵ) +  𝛾(ଶ) ≥ 𝐷 , e 

ℎ்𝑋෠(ଵ) + ℎ்𝜃(ଶ)   ≥  𝕃𝕄𝕆
(ଶ) 

Therefore, if 𝑋෠(ଶ)  is an optimal solution to the second problem, defined by Algorithm (6) and (7), 
 

𝔾𝑋෠(ଶ) ≤ 𝔽(ଶ) + ൫𝔽(ଵ) −  𝔾𝑋෠(ଵ)൯  , 0 ≤ 𝑋෠(ଶ) ≤ 𝛾(ଶ), 
𝑋෠ =  (𝑋෠(ଵ), 𝑋෠(ଶ)) is a feasible solution to problem (P), and, 

𝐶(ଶ)𝑋(ଶ) ≤ 𝐶(ଶ)𝑋෠(ଶ) ≤ 𝐶(ଶ)𝛾(ଶ), for all feasible solutions to the second subproblem. 
Combining the above results and considering the algorithm, we will have: 



 
 

 

8 
 

𝑋෠(ଵ) + 𝛾(ଶ) ≥ 𝐷, and 
𝑋෠(ଶ) ≤ 𝛾(ଶ). 

 
So, or both 𝑋෠(ଶ) = 𝛾(ଶ), and this result: 

 
𝐶(ଵ)𝑋෠(ଵ) + 𝐶(ଶ)𝑋෠(ଶ) ≥ 𝐶(ଵ)𝑋∗(ଵ) + 𝐶(ଶ)𝑋∗(ଶ), 

or 
𝑋෠(ଶ) ≤ 𝛾(ଶ) and, in this case,  𝑋෠(ଵ) + 𝑋෠(ଶ) = 𝐷, and consequently, 

𝐶(ଵ)𝑋෠(ଵ) + 𝐶(ଶ)𝑋෠(ଶ) ≥ 𝐶(ଵ)𝑋∗(ଵ) + 𝐶(ଶ)𝑋∗(ଶ). 
 

 Therefore, in any case,  𝑋෠ = (𝑋෠(ଵ), 𝑋෠(ଶ)), is also an optimal solution to the problem, and the 
theorem is true for 𝑇 = 2 periods. 
 Proof for any T periods.  

Now assume that the theorem is true for 𝑇 = 𝑘 periods and assume that it is for 𝑇 = 𝑘 + 1 periods.  
 Since it has been proved that the result for 𝑇 = 2 periods, considering a set of new variables 𝑋ത =

൫𝑋ത(ଵ), 𝑋ത(௞ାଵ)൯ where 𝑋ത(ଵ) = ൫ 𝑋(ଵ), 𝑋(ଶ) , … 𝑋(௞)൯ and according to a new cost vector 𝐶̅(ଵ) =

൫𝐶̅(ଵ), 𝐶̅(௞ାଵ)൯. Therefore, the resulting problem is the two-period problem above, and thus the result is true 
for 𝑋ത, which is equivalent to periods 𝑇 = 𝑘 + 1periods. Which assures us that the proof is complete.  
 Corollary.  

Suppose the assumptions of the above theorem are true, that the planning horizon is fixed and 
divided into several periods, and that rolling planning, where one plans the entire planning horizon and only 
executes the plan through the first period to the end of the planning horizon is in order, then the 
mathematical model decomposition scheme provided by Algorithm (6) and (7) performs exactly this rolling 
planning rule. 
 This corollary is obvious, but worth mentioning since it performs the role of rolling planning by 
just planning the period that will be executed. 

5. Illustrative Numerical Experiment 

In the example illustrated below, the solutions to the production planning problem solved for the entire 
production planning horizon are shown without the proposed decomposition scheme and with the 
decomposition of the mathematical model, which has the same input parameters. For numerical illustration 
of the proposed model, we considered a production system with two products, each with different 
components and a planning horizon of 12 periods. Random values were assigned to the model's production 
parameters and the solutions obtained were generated using the Lingo 15.0.3 software on a Dell - core i5 
machine and the analysis was done in the Excel software, where the tables are also presented. 
5.1  Data 

The following tables present the model input data, covering demand per period, the costs associated with 
production, inventory, and production capacity for the problem without decomposition. 

Table 1. Production yield parameters 

Product 1 c11 c12 c13 c14 c15 c16 c17 c18 c19 c110 c111 c112 
 26 25 30 32 36 32 37 16 20 32 26 28 

Product 2 c21 c22 c23 c24 c25 c26 c27 c28 c29 c210 c211 c212 
 22 28 28 30 40 34 40 26 27 30 27 25 

Table 3. Production components 

Product components 1 b11 b12 
  2 3 
Product components 2 b21 b22 
  3 4 
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Table 4. Inventory Handling Costs. 

 
 
 
 
 

Table 5. Inventory Costs 

Inventory Cost Product 1 5 

Inventory Cost Product 2 7 

Table 6. Available labor resources. 

Table 7. Demand. 

 
Table 8. Minimum Demand. 

  d11 d12 d13 d14 d15 d16 d17 d18 d19 d110 d111 d112 
Product 1 10 10 12 10 13 13 14 16 15 16 12 10 
  d21 d22 d23 d24 d25 d26 d27 d28 d29 d210 d211 d212 
Product 2 13 12 12 12 10 10 15 10 16 14 13 12 

Table 9. Available Capacity 

Product 1 C11 C12 C13 C14 C15 C16 C17 C18 C19 C110 C111 C112 
  13 13 12 15 14 15 13 18 15 17 14 12 

Product 2 C21 C22 C23 C24 C25 C26 C27 C28 C29 C210 C211 C212 
  13 13 12 14 13 15 17 14 17 14 13 12 

The demand (𝐷𝑖𝑗) is given in units; the yields (𝑐𝑖𝑗), inventory costs (ℎ𝑖𝑗), are given in monetary 
units; The capacity (𝛾𝑖𝑗) is given in units, and considering these parameters, each row, and each column in 
table 1 represent the products and periods, respectively.  

Resource availability (𝑆𝑘𝑗) is given in quantity of components k available to be used in each period 
j, where each row represents a component type and each column represent the periods. The bill of material 
(𝑏𝑘𝑖) is given in quantity components of type k needed to produce one unit of product i, and for this case, 
each row in table 1 represents a component type and each column represents a product.  

Labor (R𝑖) (measured in standard time) is given in minutes, where each column represents a product. 
And labor availability (measured in standard time) (R𝑗) is also given in minutes, where each column 
represents a period. 
5.2 Results 

Tables 10 and 11 show the results for products 1 and 2 respectively, these optimal solutions are for the 
production planning model (2) without the decomposition. 

 
Table 10. Optimal solution result for product 1 without decomposition. 

        Results for product 1 in the 12 periods 
𝑥ଵଵ 𝑥ଵଶ 𝑥ଵଷ 𝑥ଵସ 𝑥ଵହ 𝑥ଵ଺ 

12 13 12 10 13 14 
𝐼ଵଵ 𝐼ଵଶ 𝐼ଵଷ 𝐼ଵସ 𝐼ଵହ 𝐼ଵ଺ 

Product 1 S11 S12 S13 S14 S15 S16 S17 S18 S19 S110 S111 S112 

  65 60 50 50 58 60 65 67 80 80 65 60 

Product 2 S21 S22 S23 S24 S25 S26 S27 S28 S29 S210 S211 S212 

  90 85 85 85 88 85 90 93 109 109 95 93 

Table 2. Available Resources 

Product 1 h11 h12 h13 h14 h15 h16 h17 h18 h19 h110 h111 h112 
  40 40 40 40 40 40 40 40 40 40 40 40 
Product 2 h21 h22 h23 h24 h25 h26 h27 h28 h29 h210 h211 h212 
  40 40 40 40 40 40 40 40 40 40 40 40 

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 
151 150 146 150 155 145 165 170 187 185 170 160 

Product 1 D11 D12 D13 D14 D15 D16 D17 D18 D19 D110 D111 D112 
  10 15 12 14 10 13 12 20 13 15 17 12 
  Product 2 D21 D22 D23 D24 D25 D26 D27 D28 D29 D210 D211 D212 
  10 15 12 12 14 10 13 14 15 12 15 13 
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2 0 0 0 3 4 
𝑥ଵ଻ 𝑥ଵ଼ 𝑥ଵଽ 𝑥ଵଵ଴ 𝑥ଵଵଵ 𝑥ଵଵଶ 
12 16 15 16 14 12 
𝐼ଵ଻ 𝐼ଵ଼ 𝐼ଵଽ 𝐼ଵଵ଴ 𝐼ଵଵଵ 𝐼ଵଵଶ 
4 0 2 3 0 0 

 

Table 11. Optimal solution result for product 2 without decomposition. 

        Results for product 2 in the 12 periods 
𝑥ଶଵ 𝑥ଶଶ 𝑥ଶଷ 𝑥ଶସ 𝑥ଶହ 𝑥ଶ଺ 

13 12 12 14 12 10 
𝐼ଶଵ 𝐼ଶଶ 𝐼ଶଷ 𝐼ଶସ 𝐼ଶହ 𝐼ଶ଺ 
3 0 0 2 0 0 

𝑥ଶ଻ 𝑥ଶ଼ 𝑥ଶଽ 𝑥ଶଵ଴ 𝑥ଶଵଵ 𝑥ଶଵଶ 
15 12 16 14 13 12 
𝐼ଶ଻ 𝐼ଶ଼ 𝐼ଶଽ 𝐼ଶଵ଴ 𝐼ଶଵଵ 𝐼ଶଵଶ 
2 0 1 3 1 0 

       

And for each 1 of the 12 periods the value of the optimal solution was as follows: 
Table 12. Result of the optimal solution value. 

1 2 3 4 5 6 7 8 9 10 11 12 
 R$   

680,00  
 R$   

661,00  
 R$   

669,00  
 R$   

628,00  
 R$   

720,00  
 R$   

500,00  
 R$   

576,00  
 R$   

568,00  
 R$   

545,00  
 R$   

506,00  
 R$   

648,00  
 R$   

636,00  
Having a total of z= R$ 7,337.00. 
For the production planning problem solved through the decomposition scheme of the proposed 

mathematical model, the input data are the same as presented in tables 1-9, because both the general 
problem and the problem solved period by period receive the same input information, however, with the 
planning decomposition method we can decrease the available resources of labor and components (BOM) 
along the periods. Tables 13 and 14 show the solutions to this problem solved period by period. 

Table 13. Result of the optimal solution for product 1 with the decomposition 

        Results for product 1 in the 12 periods 
𝑥ଵଵ 𝑥ଵଶ 𝑥ଵଷ 𝑥ଵସ 𝑥ଵହ 𝑥ଵ଺ 

12 13 12 10 13 14 
𝐼ଵଵ 𝐼ଵଶ 𝐼ଵଷ 𝐼ଵସ 𝐼ଵହ 𝐼ଵ଺ 
2 0 0 0 3 4 

𝑥ଵ଻ 𝑥ଵ଼ 𝑥ଵଽ 𝑥ଵଵ଴ 𝑥ଵଵଵ 𝑥ଵଵଶ 
12 16 15 16 14 12 
𝐼ଵ଻ 𝐼ଵ଼ 𝐼ଵଽ 𝐼ଵଵ଴ 𝐼ଵଵଵ 𝐼ଵଵଶ 
4 0 2 3 0 0 

 

Table 14. Result of the optimal solution for product 2 with the decomposition 

     Results for product 2 in the 12 periods 
𝑥ଶଵ 𝑥ଶଶ 𝑥ଶଷ 𝑥ଶସ 𝑥ଶହ 𝑥ଶ଺ 

13 12 12 14 12 10 
𝐼ଶଵ 𝐼ଶଶ 𝐼ଶଷ 𝐼ଶସ 𝐼ଶହ 𝐼ଶ଺ 
3 0 0 2 0 0 

𝑥ଶ଻ 𝑥ଶ଼ 𝑥ଶଽ 𝑥ଶଵ଴ 𝑥ଶଵଵ 𝑥ଶଵଶ 
15 12 16 14 13 12 
𝐼ଶ଻ 𝐼ଶ଼ 𝐼ଶଽ 𝐼ଶଵ଴ 𝐼ଶଵଵ 𝐼ଶଵଶ 
2 0 1 3 1 0 
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Tables 13 and 14 present the results for the decomposition scheme of the proposed mathematical 
model discussed in this paper, in which it preserves the optimal solution present in tables 11 and 12 for the 
model without the decomposition having the same optimal value of z= R$7,337.00. However, as mentioned 
previously, this is the optimal solution, because there are savings in resource and computational expenses. 
Given that, the result of the fundamental problem is that we propose a decomposition scheme that reduces 
rework to the minimum possible, since it only plans the number of periods to be executed. 

It is important to clarify that the planning horizon can be divided into any number M of blocks that 
the value of the optimal solution obtained will be the same as we would have obtained if all new data were 
incorporated at the beginning of the planning horizon, and that the problem was solved without 
decomposition. The decomposition scheme of the mathematical model proposed in this work is an 
improvement of the models presented in [6] and [5]. This scheme was modified to include the inventory 
level and uncertainty in the input parameters, such as demand, production capacity, production costs, labor 
resources, so that planning in a dynamic environment is in line with factory reality.  In addition, to enunciate 
a theorem that ensures that the new proposed scheme given by the two-phase algorithm executes correctly 
in the new mathematical model (2). The scheme is quite flexible for planning parameters such as demand, 
production capacity, production resources, and others, and the proposed decomposition assumes that the 
planning horizon is fixed, and it is shortening over time, which is customary in cases of concessions of 
public services to individuals. 

In summary, Tables 13 and 14 illustrate the role of the new two-phase algorithm using a numerical 
example. Furthermore, the algorithm seems to perform well in dynamic planning environments and allows 
for data update at the beginning of each period block over the planning horizon. These results are relevant 
in view of the fact that the new approach ensures not only that linear programming models coupled to CF 
can be decomposed properly, but also that the model can be updated along with the planning horizon. 
Finally, it is important to say that in the dynamic environment in which it provides a large reduction in 
planning costs for these companies and waste of resources over the horizon. 

6 Final Considerations and Conclusions   

The work presented addressed the problem of production planning in dynamic environments, where the 
planning parameters are subject to change throughout the planning horizon. In these cases, there are at least 
two challenges: keeping the planning up to date, for the good functioning and result of the model, and 
reducing costs with replanning, which was the objective of the work. The study focused on the issue of 
using Linear Programming for production planning in dynamic environments, and with long planning 
horizons. The classical schemes presented throughout the paper, which are used to decompose the problem 
resulting from the coupling of the Clearing Function to the linear programming model, do not work properly 
in the presence of capacity constraints. Since the Clearing Function is a capacity constraint, the classical 
decomposition scheme does not work [16]. 

The decomposition scheme of the mathematical model proposed to solve the deficiencies of the 
existing models is based on a decomposition of the planning model initially proposed by [2], and extended 
by [18],[5], [17], and contemplates the need to update the information that is made available throughout the 
planning horizon, thus avoiding rework, which for any productive system means loss of resources and 
consequently, of money. 

The longer the planning horizon and the greater the dynamics of the environment, the greater the 
uncertainty of the input parameters in the planning system, which moves the initial planning further and 
further away from the reality of future periods to be covered by planning. Which brings us to the problem 
addressed in this work, where the number of planned periods is much larger than the number of periods to 
be executed. The decomposition method presented showed that it is possible to get around this problem by 
running the model period by period, or by blocks of periods, and in any case providing a lower cost solution 
to the problem of production planning in dynamic environments. 

The analysis of the presented scheme shows that, in fact, the proposed decomposition scheme 
works well for the production planning problem because the decomposition algorithm receives the same 
information as the original problem and as both have the same solving rules. Therefore, it is reasonable to 
expect that the solution obtained from the decomposition is the same as the one obtained in the absence of 
the decomposition. We can then conclude that the greater the variability in the planning environment, and 
therefore in the planning parameters, the greater the resource savings, and the lower the planning 
distortions, when compared to a more stable environment. Furthermore, the results obtained are quite 
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general since no simplifying assumptions were used, neither in the theorem nor in the rules of use of the 
algorithm. 
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