
Water and Electricity Consumption Forecasting at
an Educational Institution using Machine

Learning models with Metaheuristic Optimization

Eduardo Luiz Alba 1*, Matheus Henrique Dal Molin Ribeiro 1,
Flavio Trojan 1, Gilson Adamczuk Oliveira 1,

Erick Oliveira Rodrigues 1

1Graduate Program of Production and Systems Engineering (PPGEPS)
Universidade Tecnológica Federal do Paraná, Pato Branco, Brazil.

*eduardoalba0@hotmail.com;

Abstract
Educational institutions are essential for economic and social development. Bud-
get cuts in Brazil in recent years have made it difficult to carry out their activities
and projects. In the case of expenses with water and electricity, unexpected
situations can occur, such as leaks and equipment failures, which make their man-
agement challenging. This study proposes a comparison between two machine
learning models, Random Forest (RF) and Support Vector Regression (SVR), for
water and electricity consumption forecasting at the Federal Institute of Paraná
- Campus Palmas, with a 12-month forecasting horizon, as well as evaluating the
influence of the application of climatic variables as exogenous features. The data
were collected over the past five years, combining details pertaining to invoices
with exogenous and endogenous variables. The two models had their hyperpa-
rameters optimized using the Genetic Algorithm (GA) to select the individuals
with the best fitness to perform the forecasting with and without climatic vari-
ables. The absolute percentage errors and root mean squared error were used as
performance measures to evaluate the forecasting accuracy. The results suggest
that in forecasting water and electricity consumption over a 12-step horizon, the
Random Forest model exhibited the most superior performance. The integra-
tion of climatic variables often led to diminished forecasting accuracy, resulting
in higher errors. Both models still had certain difficulties in predicting water
consumption, indicating that new studies with different models or variables are
welcome.
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1 Introduction
In the face of budget cuts in educational institutions in Brazil, it is imperative to
explore ways of utilizing resources more efficiently [12]. Within this context, the man-
agement of expenses related to water and electricity becomes a challenge, as they can
be influenced by various factors such as leaks or equipment overloads. Forecasting
consumption can facilitate optimization and aid in the detection of these anomalies.

In forecasting electricity consumption, meteorological variables are commonly
employed, given that weather conditions impact the amount of electricity required for
heating or cooling environments [19]. Conversely, some studies assert that these cli-
matic variables are not prerequisites for modeling energy consumption [8]. Concerning
water consumption, even slight temperature changes or holiday periods can exert a
significant influence [7].

Upon analyzing related works, two models have been frequently addressed in the
prediction of water and/or electricity consumption. The Random Forest (RF) model
has been discussed in studies such as [5, 9, 15–17], while the Support Vector Regression
(SVR) model has been employed in works such as [2, 8, 13, 15, 16].

Therefore, the present study conducts a comparative analysis between the machine
learning models, Random Forest and Support Vector Regression, for predicting water
and electricity consumption in a public educational institution in Brazil. The fore-
casting horizon considered is 12 months ahead, with hyperparameter optimization
achieved using a proposed implementation of a Genetic Algorithm, a stochastic search
algorithm inspired by Darwin’s theory of evolution [18].

This investigation relies on historical climatic data and monthly consumption data
of water and electricity from the Instituto Federal do Paraná (IFPR) - Campus Pal-
mas, in Brazil. The performance of the models is evaluated using measures such as
Mean Absolute Percentage Error (MAPE) and Root Mean Squared Error (RMSE).

This study contributes to the literature in several ways. First, by conducting a
comparative analysis between Machine Learning models with parameter optimiza-
tion for predicting water and electricity consumption in an educational institution, it
addresses a gap in the literature that lacks this specific theme. Second, the research
considers climatic data and historical consumption to enhance the understanding of
the variables influencing electricity and water expenditures. Finally, it provides a foun-
dation for comparison that can be of great utility for researchers, professionals, and
managers facing similar challenges.

2 Materials and Methods
The water and electricity consumption forecast encompasses several stages, including
data preprocessing, hyperparameter optimization of machine learning models, model
training and testing, and performance evaluation using specific measures, as described
through this section.

The data used in the experiment was collected at the Federal Institute of Paraná -
Campus Palmas, based on the consumption information from its water and electricity
invoices. This dataset includes information for the period from August 2018 to October
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2023 for water consumption and from August 2018 to September 2023 for electricity
consumption, as demonstrated in Table 1.

Table 1 Summary of data obtained from water and electricity invoices of the Federal Institute of
Paraná - Campus Palmas.

Consumption Frequency Observations Min. Max. Mean Standard Deviation

Water (m³) Monthly 63 206 1074 502.03 207.01
Electricity (kWh) Monthly 62 7252 25339 15828.60 4733.04

As shown in Figure 1, an irregular pattern was observed in both time series,
particularly during the period from March 2020 to September 2021, when all in-person
academic activities were suspended due to the COVID-19 pandemic.

Fig. 1 Water consumption (in m³) from Aug/2018 to Oct/2023 (top) and electricity consumption
(in KWh) from Aug/2018 to Sep/2023 (bottom) at the Federal Institute of Paraná - Campus Palmas.

Due to the decrease in academic activities during school vacation periods, typically
between December/January and July/August (according to academic calendars), a
seasonal pattern of decreased water and electricity consumption was expected within
the time series data. However, the conducted hypothesis tests did not identify any
statistically significant trending or seasonal behaviors in the dataset.

To assess the presence of trends in the series, three tests were performed: the
Wald-Wolfowitz test [22], the Mann-Kendall test [14], and the Cox-Stuart test [3]. The
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Wald-Wolfowitz test indicated that the series were not generated randomly, suggesting
the presence of trends. However, the Mann-Kendall and Cox-Stuart tests did not
identify significant trends in the series, as indicated by the p-values. Finally, the
obtained p-valor for Kruskal-Wallis test [10] did not reveal the existence of significant
seasonalities. These results are shown in Table 2.

Table 2 Trend and seasonality hypothesis testing results.

Test Critical Value P-Value Conclusion

Water

Wald-Wolfowitz (Run Test) 5% 0.02117 Trending
Man Kendall 5% 0.07325 No trend
Cox Stuart 5% 0.07076 No trend
Kruskal-Wallis 5% 0.47610 No seasonality

Electricity

Wald-Wolfowitz (Run Test) 5% 0.00403 Trending
Man Kendall 5% 0.09365 No trend
Cox Stuart 5% 0.47310 No trend
Kruskall-Wallis 5% 0.47590 No seasonality

Furthermore, the tests Augmented Dickey-Fuller (ADF) [4] and Kwiatkowski,
Phillips, Schmidt, and Shin (KPSS) [11] were employed to assess whether the mean of
the data exhibited stationary behavior. The results of these tests indicated that the
time series data did not exhibit stationary properties.

In addition to hypothesis tests used to identify trends, seasonality, and station-
arity, Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF)
analyses were also conducted. These analyses indicated that both series exhibited no
significant correlations with their past values. This suggests that past values do not
hold significant predictive power for forecasting current values.

The exogenous variables (shown in Table 3) incorporated into the Machine Learn-
ing Models Random Forest (RF) and Support Vector Regression (SVR) included
information related to institutional activities and climatic data. Information regarding
the activities of the Federal Institute of Paraná - Campus Palmas was obtained from
academic calendars publicly available on its website. Meanwhile, climatic data were
acquired through the Agritempo portal, an agrometeorological monitoring system that
provides information of various Brazilian municipalities.

Table 3 Sets of predictor variables for water and electricity consumption.

Group Predictor Variables Type Frequency

Institutional Activities

Number of courses in the last hour Integer

HourlyHours of holiday/break Integer
Hours of suspended activities (Covid) Integer
Hours of various activities Integer

Weather Data

Minimum Temperature Decimal

DailyMaximum Temperature Decimal
Average Temperature Decimal
Precipitation Decimal

Time Data Weekday Categorical Daily
Month Categorical Monthly

Comsumption Data Lags Integer Monthly
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The proposed methodological framework for this study is illustrated in Figure 2.

Fig. 2 Methodology framework proposed for water and electricity consumption forecasting.

Given the disparate frequencies among predictor variables, was imperative prepro-
cessing and transformation procedures to harmonize their temporal resolution with
the target variables, which were measured on a monthly basis. This was achieved using
Python’s grouping functions from the Pandas and NumPy libraries. First, hourly data
was grouped into daily data by calculating their averages. Subsequently, the daily
values were aggregated into monthly intervals through summation.

Upon conducting a comprehensive review of the literature on water and electricity
consumption forecasting, two machine learning models emerged as prominent choices
due to their widespread adoption: Random Forest (RF) [5, 9, 15–17] and Support
Vector Regression (SVR) [2, 8, 13, 15, 16] exhibited good performances. In light of
their wide application, these two models were selected for this investigation.

The Random Forest model is an machine learning algorithm that utilizes mul-
tiple decision trees to make predictions. Decision trees are structures that partition
data into subsets based on conditional rules. To construct a Random Forest model,
numerous decision trees are generated, each trained on a random subset of the data.
The final prediction is determined by aggregating the individual predictions of all the
trees, typically using the average or majority vote [1].

In the implementation of Random Forest (RF) in the Python scikit-learn library,
their hyperparameters include the number of estimators and the maximum depth.
The number of estimators directly influences the number of trees employed in the
ensemble, while the maximum depth controls complexity level of model. Striking a
balance between these parameters is essential, as they significantly impact in accuracy.

The Support Vector Regression (SVR) model is based on the concept of support
vectors. Support vectors represent data points that define the boundary separating
of them. The SVR seeks to identify a function that minimizes the error between the
observed data and the modeled function, with a specified tolerance margin [6, 21].

In the model Support Vector Regression (SVR), the Python scikit-learn library
offers various adjustable hyperparameters, among which the kernel, regularization
parameter (C), and Epsilon stand out. The kernel determines the function used to map
input data, with options such as linear, polynomial, radial, and sigmoid, each being
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better suited to different types of data and underlying relationships. The regulariza-
tion parameter controls the adjustment of the model to the training data, avoiding
overfitting by balancing complexity and smoothness. The epsilon parameter, width of
the margin, defines the acceptable range for prediction errors, influencing the number
of support vectors and the trade-off between bias and variance in the model.

Similar to the work of [20], which uses a Grid-Search to determine the optimal
values of the hyperparameters for forecast models, this study conducted a custom
implementation of the Genetic Algorithm (GA) in Python, considering specific ranges
as indicated in Table 4.

Table 4 Range of values for hyperparameters of RF and SVR models.

Hyperparameter Data Type Range of Values

RF estimators Integer 5 - 200
max_depth Integer 50 - 200

SVR
Kernel String “poly”, “sigmoid”, “rbf”
Epsilon Float 0.00001 - 1
C Float 1.0 - 3000.0

Both lags Integer 0 - 20

The Genetic Algorithm (GA), a powerful metaheuristic optimization technique,
draws inspiration from the processes of natural selection and evolution. Its operation
commences with the initial creation of a population of individuals, each representing
a potential solution to the problem [23].

The initial population is comprised of individuals whose genes represent the param-
eters and are assigned random values. Each individual within the population possesses
a set of genes and a corresponding fitness value. In this instance, fitness is measured
using the Mean Squared Error (MSE), which is inversely proportional to the model
error. This implies that individuals with lower MSE scores are considered fitter.

In this study, experiments varied the population size (100, 200, and 500) and the
number of generations (200, 500, and 1000). Following the initialization of each popu-
lation, individual fitness was evaluated. Each hyperparamether set were was employed
to perform a simple forecast within the dataset. A train-test split validation approach
was employed to calculate the Root Mean Squared Error (RMSE) for each individual.

The genetic algorithm execution terminates upon reaching the predetermined num-
ber of generations. Within each generation, crossover and mutation operators are
applied. Crossover was executed by randomly selecting two individuals and creating
a new one by randomly choosing genes from each.

During crossover, there is a probability for the new individual to undergo mutation
in one of its genes. The mutation operator randomly modifies the values of a gene,
with a difference between 50% and 120% of the original value for numerical genes, or
by randomly choosing from the available values for categorical genes.

The training and testing phases of the optimized RF and SVR models involved a
train-test split of the datasets (with and without weather data), each containing 12
data for test. The models’ performance was then evaluated using two measures: Mean
Absolute Percentage Error (MAPE) and Root Mean Squared Error (RMSE).
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3 Results and Discussions
The results of genetic algorithm optmization on the RF model are shown in Table 5.

Table 5 Best sets of hyperparameters (individuals) of the Random Forest (RF) model generated
by the genetic algorithm in each population and generation variation.

Forecast With climate Without climate

Individuals 100 200 500 100 200 500
Generations 200 500 1,000 200 500 1,000

Water

Estimators 6 6 6 6 6 6
Max depth 114 52 169 105 50 108
Lags 4 4 4 4 4 4
Time 89,07 209,24 461,12 88,15 203,80 454,93
Fitness 33.336,08 33.336,08 33.336,08 33.716,00 33.716,00 33.716,00

Electricity

Estimators 64 64 58 171 7 9
Max depth 129 117 137 121 144 131
Lags 7 7 11 13 13 13
Time 103,65 236,85 518,54 102,30 230,66 482,79
Fitness 7.566.440,00 7.566.440,00 7.549.811,75 7.525.728,75 7.442.614,75 7.276.683,33

* Boldfaced values indicate the fittest individuals identified for the corresponding Random Forest experiment.

During the water consumption forecasting RF, while incorporating climatic vari-
ables, the average execution time exhibited a increase, with values exceeding 454.93
and 461.12 seconds in the last experiments. Similar observations were noted in the
electricity consumption, with average execution times of 518.54 and 482.79 seconds.

In water consumption forecasting experiments, the number of estimators remained
constant at 6 for all optimal models, regardless of incorporating climatic variables.
However, the maximum depth parameter exhibited a wider range of values with
weather data: 52-169 when climatic variables were included and 50-108 without them.

Examining the data of the best-performing individual, the climatic variables in the
prediction of electricity consumption, led to an increase in the number of estimators
from 9 to 58 for the best-performing individual.

The results of optimization on the SVR model are shown in Table 6.

Table 6 Best sets of hyperparameters (individuals) of the Support Vector Regression (SVR)
model generated by the genetic algorithm in each population and generation variation.

Forecast With climate Without climate
Individuals 100 200 500 100 200 500
Generations 200 500 1,000 200 500 1,000

Water

Kernel poly poly poly poly poly poly
Epsilon 0,2231 0,1472 0,3024 0,4221 0,3384 0,0351
C 3148 2659 3222 791 91 679
Lags 1 1 1 0 0 0
Time 100,60 256,03 483,62 91,84 237,12 352,19
Fitness 43.533,67 43.573,33 43.566,58 46.284,33 45.928,33 46.158,00

Electricity

Kernel rbf rbf rbf rbf rbf rbf
Epsilon 0,6500 0,3074 0,1805 0,0561 0,0477 0,1410
C 2642 2483 2374 2228 2256 2206
Lags 1 1 1 1 1 1
Time 104,48 259,86 501,53 98,07 236,33 357,75
Fitness 9.994.958,08 9.915.009,58 9.902.730,50 9.910.789,83 9.909.875,67 9.910.789,83

* Boldfaced values indicate the fittest individuals identified for the corresponding SVR experiment.
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In water consumption forecasting utilizing Support Vector Regression (SVR), the
Genetic Algorithm consistently opted for the polynomial kernel across all scenarios,
irrespective of the inclusion of climatic variables. Conversely, the radial basis function
(RBF) kernel emerged as the preferred choice for electricity consumption forecasting.

When climatic variables were incorporated into the water consumption forecasting
models, the optimal solution entailed the inclusion of only one lag. Conversely, in the
absence of these variables, no lag was taken into account. For electricity consumption
forecasting, a single lag was universally adopted across all scenarios.

A significant increase in the “C” parameter was observed in water consumption
forecasting upon the inclusion of climatic variables, surging from 91 to 3148. These
increase was more moderate in electricity consumption, fluctuating from 2374 to 2256.

When forecasting water consumption across a 12-step interval and evaluat-
ing performance using Mean Absolute Percentage Error (MAPE) and Root Mean
Squared Error (RMSE) measures, the Random Forest (RF) model exhibited superior
performance when climatic variables were integrated, as illustrated in Table 7.

Table 7 Performance of RF and SVR models in water consumption forecast (in M3) at the
Federal Institute of Paraná - Campus Palmas.

Horizon Measure RF SVR
With climate Without climate With climate Without climate

12 Months MAPE (%) 26,10 33,13 35,78 39,41
RMSE 182,58 183,62 208,65 214,31

* Boldfaced values highlight the model with the lowest error for water consumption forecasting.

A visual depiction of water consumption experiment is elaborated in Figure 3.

Fig. 3 Representation of the training and test time series for RF (top) and SVR (bottom) models
considering the inclusion of climatic variables (left) and their exclusion (right) for forecasting water
consumption 12 steps ahead.
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In instances where there exists a tie and the discrepancy in performance between
models is minimal, it becomes imperative to take into account the augmented complex-
ity associated with models incorporating climatic variables. Evaluating the difficulty in
acquiring forthcoming climatic data becomes essential, as this heightened complexity
may introduce forecasting hurdles, potentially resulting in imprecision and the accu-
mulation of errors. Consequently, the selection of the optimal model should encompass
considerations of both predictive accuracy and practicality, taking into consideration
factors such as data availability.

For 12-step electricity consumption forecasting, the Random Forest (RF) model
achieved the lowest Mean Absolute Percentage Error (MAPE) and Root Mean
Squared Error (RMSE) when no incorporation of climatic variables was considered,
as shown in Table 8.

Table 8 Performance of RF and SVR models in electricity consumption forecast (in KWh) at the
Federal Institute of Paraná - Campus Palmas.

Horizon Measure RF SVR
With climate Without climate With climate Without climate

12 Months MAPE (%) 12,97 12,46 15,16 15,16
RMSE 2.747,69 2.697,53 3.146,86 3.148,00

* Boldfaced values highlight the model with the lowest error for electricity consumption forecasting.

This is further supported by the visual representation in Figure 4.

Fig. 4 Representation of the training and test time series for RF (top) and SVR (bottom) models,
with the inclusion of climatic variables (left) and their exclusion (right), for forecasting electricity
consumption 12 steps ahead.

The performance of the optimized Random Forest models for predicting water and
electricity consumption was compared to that of other methods, as shown in Table 9.
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Table 9 Comparison of the Predictive Performance of Optimized Random Forest models and
Alternative Models.

Measure RF with
Climate

Exponential
Smoothing

Brown
model

Holt-Winters
Additive

Holt-Winters
Multiplicative

Water MAPE (%) 26,1 34,62% 40,38% 37,41% 38,23%
RMSE 182,58 1034,73 917,93 1077,45 951,24

Measure RF without
Climate

Exponential
Smoothing

Brown
model

Holt-Winters
Additive

Holt-Winters
Multiplicative

Electricity MAPE (%) 12,46 17,03% 23,41% 24,08% 25,12%
RMSE 2697,53 12430,95 17642,92 17578,68 17573,09

* Boldfaced values highlight the model with the lowest error for forecasting.

Optimized Random Forest models consistently demonstrated significantly supe-
rior performance across all evaluated scenarios. However, traditional methods such as
exponential smoothing, Brown, and Holt-Winters, despite being less complex, serve
as benchmarks for evaluating the effectiveness of the proposed models.

4 Conclusions and Future Work
The genetic algorithm improves the model prediction by optimizing the hyperparam-
eters for the Random Forest and Support Vector Regression models. The goal was to
select the hyperparameter combinations that minimized mean squared error.

In a comparative analysis of 12-step ahead forecasts for water and electricity con-
sumption in IFPR, the RF algorithm revealed as the most effective model. In water
consumption, the RF model with climate variables outperformed the RF model with-
out climate, achieving a MAPE of 26.10% and a RMSE of 182.58 compared to 33.13%
and 183.62. Conversely, in electricity consumption, the RF model without climate
achieved a MAPE of 12.46% and RMSE of 2697.53, surpassing the RF model with
climate, which had a MAPE of 12.97% and RMSE of 2747.69.

Concerning climatic variables, their impact on forecasting varies depending on
several factors, including the forecasting horizon, the specific time series under anal-
ysis (whether water or electricity), and the chosen model. In certain instances, their
incorporation led to an elevation in errors, suggesting that their utilization should
be exercised with prudence. Moreover, obtaining climatic data can pose challenges,
potentially introducing a new layer of complexity to the forecasting problem.

In electricity consumption prediction, both models outperformed those applied in
water consumption prediction, as indicated by the MAPE. Nevertheless, additional
experiments are warranted, encompassing the assessment of alternative time series
forecasting models and scrutinizing the impact of additional explanatory variables on
the efficacy of both forecasting tasks.

As future work, our objectives include assessing the impact of novel exogenous
variables on prediction accuracy and exploring the applicability of machine learning
models not covered in this investigation. Additionally, we intend to integrate parallel
processing techniques utilizing GPUs to facilitate experiments involving larger num-
bers of generations within the genetic algorithm framework and better optimization
for training. At last, we plan to investigate the influence of data from the COVID-19
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pandemic period on the model’s performance. This will entail conducting comparative
analyses with and without the incorporation of this data.
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